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Anomalous Dispersion Relations by Symmetry Breaking in Axially Uniform Waveguides
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We show that modes of axially uniform waveguides of arbitrary cross section can be made to have
anomalous dispersion relations resulting from strong repulsion between two modes. When the axial
wave vector k is 0, the two modes have different TE/TM symmetry and thus can be brought arbitrarily
close to an accidental frequency degeneracy. For nonzero k, the symmetry is broken causing the modes
to repel. When the modes are sufficiently close together this repulsion leads to unusual features such as
extremely flattened dispersion relations, backward waves, zero group velocity for nonzero k, atypical
divergence of the density of states, and nonzero group velocity at k � 0.
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FIG. 1 (color). Top panel: Schematic drawings of the three
types of reflective-cladding waveguides that employ metal-
lic, multilayer-film, and photonic-crystal claddings. Bottom
panel: Schematic band diagrams showing two neighboring
modes as the relative frequency separation is decreased. At
k � 0 one mode is TE polarized and the other TM polarized
(the order is not important). (a) Weakly interacting modes.
(b) A stronger interaction leads to a very flat lower band.
magnetic field of a mode has the form Hk�x; y� ei�kz�!t�.
The dispersion relation !�k� and the field profile Hk�x; y�
are obtained from the eigenvalue equation �kHk �

(c) The repulsion between modes is strong enough to cause a
backward wave region in the lower band. (d) Accidentally
degenerate modes at k � 0 can have nonzero group velocity.
Axially uniform (constant cross section) waveguides
have been studied extensively for numerous applications,
ranging from optical communications and integrated
optics to microwave technology. Lateral confinement of
light in waveguides is achieved either by total internal
reflection (TIR) as in optical fibers [1], or by the use of a
reflective cladding as in metallic waveguides [2], Bragg
fibers [3–5], and photonic-crystal fibers [6] (see Fig. 1).
Typically, the guided modes of TIR waveguides have
dispersion relations !�k�, frequency versus wave num-
ber, that are monotonic curves lying between the light
lines associated with the lowest and highest indices of
refraction in the structure. On the other hand, reflective-
cladding waveguides can have dispersion relations that
start from the k � 0 axis, as shown in Fig. 1(a).
Ordinarily, these modes start with zero group velocity
and have monotonically increasing dispersion relations
as well.

In this Letter, we show by analytical and numerical
methods that reflective-cladding waveguides of arbitrary
cross-sectional symmetry can be made to support modes
with anomalous dispersion relations, Figs. 1(b)–1(d), that
result from strong repulsion between a pair of modes in
the vicinity of k � 0. We discuss unusual and counter-
intuitive consequences that include backward waves, a
reversed Doppler shift, reversed Cherenkov radiation,
atypical singularities in the density of states, and a lon-
gitudinal length scale determined purely by the trans-
verse waveguide profile. The results are general because
they have their origin in a reflection symmetry shared by
all axially uniform waveguides.

Consider a lossless nondispersive isotropic dielectric
that is uniform in the z direction: ��x; y; z� � ��x; y�.
The continuous translational symmetry implies that the
axial wave vector k is a conserved quantity and that the
0031-9007=04=92(6)=063903(4)$22.50 
�!2=c2�Hk, where �k � �rt � ikẑz� � � 1� �rt � ikẑz� � �
and rt � �@=@x�x̂x� �@=@y�ŷy.

There are two spatial symmetries that all axially uni-
form waveguides possess: continuous translational sym-
metry in the z direction and reflection symmetry through
the xy plane. In practice, typical waveguides might have
additional symmetries such as rotations around the z axis
or reflection into a vertical plane. We first consider wave-
guides with general nonsymmetric cross section and later
deal with additional symmetries.

Let �h be the reflection in the transverse xy plane. The
dielectric function ��x; y; z� of a uniform waveguide is
obviously symmetric under �h. However, the modes of
2004 The American Physical Society 063903-1
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the waveguide are not generally symmetric under �h
because the axial wave vector k breaks this symmetry.
A special case exists for k � 0, when the operator �k still
preserves the symmetry of �. At k � 0, the modes have to
be either even or odd with respect to �h. Even modes are
said to have transverse electric (TE) polarization because
their electric field is contained in the transverse plane;
odd modes have transverse magnetic (TM) polarization.
It is this symmetry that exists only at k � 0 that is
responsible for effects presented in this Letter.

Consider now two neighboring TE and TM modes at
k � 0, as shown in Fig. 1(a). The relative frequency sepa-
ration between these two modes can be reduced by
modifying the dielectric distribution ��x; y�. Because
the orthogonality of these two modes at k � 0 is guaran-
teed by the TE/TM symmetry, it is generally possible to
make the frequency separation arbitrarily small, as
shown in Figs. 1(a)–1(d), including the possibility of
creating an accidental degeneracy.

Let us now examine the two modes and their dispersion
relations at wave vectors k larger than 0. �k�0 is no longer
symmetric under reflection through the xy plane, and,
since we are considering at this point only waveguides
with general nonsymmetric cross section, �k has no
remaining symmetry at k � 0. The two modes no longer
have pure TE or TM polarization and now belong to the
same irreducible representation. This leads to a repulsion
063903-2
between the two modes as seen in Fig. 1. The smaller the
frequency separation at k � 0, the stronger the repulsion
becomes.

Waveguides used in practice usually possess additional
symmetries. For example, a circular waveguide has con-
tinuous rotational symmetry and is symmetric with re-
spect to reflection across planes containing the z axis. In
this case, in order to interact, the two modes must be
chosen more carefully, such that at k � 0 the modes
belong to the same irreducible representation. Thus, for
the circular waveguide, the two modes must have the
same angular quantum number. Concrete examples of
strongly interacting modes will be given later.

We obtain quantitative results for the behavior of !�k�
in the vicinity of k � 0 by using perturbation theory for
the eigenvalue equation for !2. We expand �k in powers
of k, and we treat the linear and quadratic terms as
perturbations. The approach is similar to the k � p
method used for electronic band structures. However,
the derivation is complicated by the vectorial nature of
the electromagnetic eigenvalue problem. Because of the
constraint r �H�r� � 0, the physical modes at k � 0 do
not form a complete basis in which to expand the modes at
k � 0. The correct perturbation theory in k for electro-
magnetism was derived recently by Sipe [7]. Since for a
nondegenerate mode at k � 0 the group velocity is zero,
we use second-order perturbation theory to evaluate the
second derivative of !n�k� at k � 0:
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Here, the index ‘ is summed over all modes of the
waveguide, except for the nth mode. The integrals are
over the entire cross section. E�n�

t stands for the transverse
part of the normalized electric field for the nth mode at
k � 0. The right-hand side has two contributions: (i) the
first term contains only the field of the nth mode itself and
is always positive; (ii) the second term represents the
interaction of the mode of interest with the other modes
of the waveguide. Contribution (ii) is negative for modes
above the mode of interest (!‘ > !n) and positive for
modes below the mode of interest (!‘ <!n). We interpret
this term as a repulsion between modes, whose strength
diverges as the frequency separation !n �!‘ is taken to
zero. Thus, although this term is relatively small for a
typical waveguide, we can make it the dominant term by
decreasing !n �!‘. Also note that the interaction be-
tween two modes is nonzero only for modes of opposite
TE/TM polarization.

The first unusual effect that results from the strong
mode repulsion is the negative-slope region of the lower
mode in Figs. 1(c) and 1(d). Modes for which vg �
@!=@k and v’ � !=k have opposite signs are called
‘‘backward-wave’’ modes and were discovered in the
context of dielectric-loaded circular metallic waveguides
by Clarricoats and Waldron [8]. Based on empirical evi-
dence, their existence has been associated with the near
degeneracy of two modes of different polarization [9].
Below the minimum frequency of the backward wave
mode there are evanescent modes (not shown in Fig. 1) for
which k2 is not real. The existence of these complex
modes has been studied in [10–12]. We believe that this
Letter provides the necessary physical intuition for
understanding the existence of backward waves and com-
plex modes in waveguides with arbitrary cross section.

We now discuss some remarkable effects based on
backward waves. The momentum �hk of a photon associ-
ated with a such a wave is negative, i.e., it is oriented in
the opposite direction to the propagation of the photon.
Imagine that an atom placed inside the waveguide absorbs
a backward wave photon via an atomic transition. The
recoil momentum points towards the direction from
which the photon came, which means that negative ra-
diation pressure is being exerted on the atom. Similarly
the Doppler shift for light traveling in a backward wave is
reversed. Finally, reversed Cherenkov radiation results
from resonant radiation of a relativistic electron into a
backward wave. While this effect has been discussed
063903-2



TABLE I. Possible Van Hove singularities in the density of
states D�!� corresponding to the lower mode in Figs. 1(a)–1(d).
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before in the context of periodically modulated structures
[13,14] and for negative index media [15], it is notable
that it can be also obtained in a simple axially uniform
waveguide.

Another peculiar feature resulting from strong mode
repulsion is the possibility of having zero group velocity
at a nonzero value of the wave vector, as in Figs. 1(c) and
1(d). Let k0 � 0 be the wave vector where vg � 0. The
�k0; !�k0�� point of the dispersion relation is qualitatively
different from all other points and corresponds to a mode
that does not transport energy but does have moving
phase fronts. Moreover, the region of the dispersion rela-
tion between 0 and k0 has all the characteristics of a band
in the folded band structure of a medium that has peri-
odicity � � �=k0 in the axial direction — ironically, this
longitudinal length scale � is determined only by the
transverse dielectric profile. To some degree, then, this
uniform waveguide behaves as if it had a periodic corru-
gation in the axial direction. For potential applications,
we note that the pitch � of this virtual corrugation can be
modified dramatically by simply tuning the transverse
profile of the waveguide. Also, the flat region of the
dispersion relation around the �k0; !�k0�� point could be
very useful in the field of waveguide nonlinear optics,
where a small group velocity enhances nonlinear effects
by a factor of c=vg while the phase-matching criterion
can still be satisfied because the wave vector is nonzero.

Another unusual feature is found in Fig. 1(d) for small
values of k. If the two interacting modes are exactly de-
generate, their group velocities remain constant as k ! 0.
We can thus have, in an axially uniform waveguide, a
propagating mode that has almost no axial phase varia-
tion. In terms of practical applications, a regular mode in
the neighborhood of k � 0 has very small group velocity
and thus becomes unusable because both the dispersion
and the losses scale inversely with vg and thus diverge as
we approach k � 0. The modes in Fig. 1(d) do not have
this problem because vg is roughly a constant in the
vicinity of k � 0.

The density of states (DOS) associated with the lowest
of the two interacting modes varies dramatically between
the four situations depicted in Figs. 1(a)–1(d). The con-
tribution of a mode to the DOS is inversely proportional
to the group velocity @!=@k. More generally, at a singular
point the type of Van Hove singularity [16] is determined
by the first nonzero derivative of !�k�. A summary of
possible behaviors is presented in Table I, in which the
four rows correspond to the four situations shown in
Fig. 1. Case (a) is the normal 1D divergence that is asso-
ciated with the cutoff of a typical mode. In case (b) the
mode repulsion is chosen to exactly cancel the second
derivative of !�k�. Also, the third derivative is zero by
time-reversal symmetry, which means the first nonzero
derivative is @4!=@k4. This extremely flattened dispersion
relation leads to a very strong divergence of the DOS,
which could be useful in the design of low-threshold
063903-3
lasers. Also, it would modify the radiative behavior of
atoms inside the waveguide [17]. Of course, the cancella-
tion of the second derivative cannot be achieved exactly
in experiment. However, it is enough to have a very small
second derivative in order to get a very large enhancement
of the DOS. In case (c), the second derivative has a nega-
tive sign. Also, we have an additional singularity in the
DOS coming from the minimum of !�k� at a nonzero k
[see Fig. 1(c)]. Finally, case (d) corresponds to the acci-
dental degeneracy at k � 0 of the two interacting modes.
Because the group velocity is constant near k � 0, the
contribution to the DOS coming from each of the modes is
a Heaviside step function. The group velocities of the two
modes are equal in magnitude, which means that the total
contribution to the DOS is a constant. When the two
modes are not exactly degenerate at k � 0 they each
contribute a peak to the DOS. One can imagine making
a waveguide in which the two modes can be tuned in and
out of the degeneracy, thus turning on and off the two
peaks in the DOS.

As concrete examples of waveguides supporting modes
with anomalous dispersion relations, we have performed
numerical simulations for two all-dielectric waveguides
as shown in Fig. 2. Both waveguide geometries should be
experimentally realizable [4,6,18]. The actual parameters
were chosen to exhibit Figs. 1(b) and 1(c) behavior.

The cylindrical Bragg waveguide in Fig. 2(a) confines
light by means of a multilayered periodic cladding [4].We
calculate its modes using a transfer matrix approach [3].
We focus on two strongly repelling modes that have
angular quantum number unity. At k � 0 the lower
mode is TE polarized, and the upper mode is TM polar-
ized. The lower mode has a negative group velocity from
k � 0 to k0 � 0:172 �2�c=a�, with a minimum group
velocity vg � �0:05c. It also has a point of zero group
velocity at the nonzero wave vector k0.

In the photonic-crystal fiber [6] of Fig. 2(b) light is
confined by the complete band gap of a triangular lattice
of holes. The modes of the structure were computed using
a freely available frequency-domain solver [19]. We start
with the bulk 2D photonic crystal and create a standard
core by removing the seven central unit cells [6]. The
resulting hollow waveguide supports modes that are simi-
lar to those of a hollow metal cylinder.We choose the pair
of modes that are analogous to the degenerate pair TE01

and TM11 of the metal waveguide. Here, they are not
063903-3
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FIG. 2. (a) Dispersion relations of two modes with angular
momentum unity for the cylindrical waveguide in the inset.
The dark regions have an index of refraction 4.6 (e.g., Te),
while the light gray regions have 1.4 (e.g., polymer). Starting
from the center, the rod has a radius 0:45a, the first ring has a
thickness 0:32a, the second one 0:23a, and the following low/
high index layers have thicknesses 0:75a=0:25a, respectively.
(b) Ultraflattened dispersion relation in a photonic-crystal fiber
with an index of refraction of 3.5 (e.g., semiconductor). The
distance between two neighboring air holes is a and the radius
of a normal hole is 0:46a. The two dotted holes below the fiber
core have a modified radius of 0:40a.
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exactly degenerate but have a relatively small frequency
separation, which is favorable for a strong mode interac-
tion. However, these modes do not interact because they
transform differently under a reflection symmetry across
a plane containing the waveguide axis. To allow the
modes to interact we break the C6v symmetry of the
waveguide by decreasing the radius of two holes below
the waveguide core. Thus, we obtain the cross section and
dispersion relations of Fig. 2(b). Although backward
waves can be obtained here too, we instead choose a
value for the radius of the two modified holes such that
the lower mode has an extremely flat dispersion relation.

By using higher-order modes, waveguides with a
smaller index of refraction contrast can also be made to
have anomalous dispersion relations. Because the typical
relative frequency separation for these modes is smaller,
they require a smaller perturbation in order to be made
nearly degenerate. Thus, the high-index component of the
waveguide could be made of chalcogenide glasses [18]
with an index of up to 2.8. Finally, note that even though
the modes in Fig. 2 lie above the light line, if the repulsion
is strong enough the anomalous nature of the modes can
063903-4
extend below the light line, leading to backward wave
modes that are index guided.

We have shown that repulsion between a pair of modes
can result from a reflection symmetry that exists at k � 0
and is broken for nonzero k. The strength of the repulsion
diverges as the relative frequency separation of the modes
is decreased to zero. Although this paper deals only with
the band structure of axially uniform waveguides, similar
effects should be attainable in more complex systems,
such as 2D and 3D photonic crystals.
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