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Abstract: The spectral properties of light confined to low-index media
by binary layered structures is discussed. A novel phase-based model with
a simple analytical form is derived for the approximation of the center
of arbitrary bandgaps of binary layered structures operating at arbitrary
effective indices. An analytical approximation to the sensitivity of the
bandgap center to changes in the core refractive index is thus derived.
Experimentally, significant shifting of the fundamental bandgap of a
hollow-core Bragg fiber with a large cladding layer refractive index contrast
is demonstrated by filling the core with liquids of various refractive indices.
Confirmation of these results against theory is shown, including the new
analytical model, highlighting the importance of considering material
dispersion. The work demonstrates the broad and sensitive tunability of
Bragg structures and includes discussions on refractive index sensing.
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1. Introduction

Binary layered structures are attracting increasing interest for applications in which their
resonant response or efficient reflection abilities can be exploited. They are the most simple
multilayer optical structures. By using a binary layered structure as a waveguide cladding,
first discussed in detail by Yeh and Yariv in 1976 [1–3], light guidance within media of low
refractive index in planar or fiber platforms has, within the last decade, been demonstrated for
applications to microfluidic optical interactions [4–6], sensing [7,8], particle guidance [9], high-
power delivery [10, 11], nonlinear optics [12] and surface-emitting fiber lasers (SEFLs) [13].
This simple multilayer system also has applications to high quality-factor cavity-based devices
such as radial Bragg resonators [14] and vertical-cavity surface-emitting lasers (VCSELs) [15].
Multilayer dielectric media also have the potential for efficient coupling to optical resonances
such as surface-plasmons [7]. These devices exist today due to the development and improve-
ment of the stringent multilayer fabrication techniques required for these wavelength-scale
structures. In all cases—mirror, waveguide, cavity or coupling—the resonant interaction of
light with the binary structure, and the understanding of this interaction, is critical.
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Fig. 1. A schematic of a Bragg fiber with a filled core such that ncore ≤ n0 < n1. The diagram
to the right can also represent an arbitrary planar low-index core Bragg waveguide.

Many of these applications exploit the ability of binary layers to efficiently reflect light back
into a medium of refractive index lower than the layers themselves, such as in liquid-filled
waveguides for applications in optofluidics [4–6], particle manipulation [9] and sensing [7, 8,
16], where such host liquids can have a wide range of refractive indices. An understanding
of the effect of varying the refractive index of the medium from which the light is incident is
necessary in order to understand the response of the multilayer structure.

Integrated anti-resonant reflecting optical waveguides (I-ARROWs) have recently been used
for guidance within liquids [4, 5, 8, 17]. I-ARROWs consist of a planar multilayer structure
surrounding a hollow core channel, typically on-chip. The core can be used as a flow cell and
filled with liquids. If the refractive index of the liquid is below the lowest index of the cladding
– which is usually the case of interest due to the high layer indices – the multilayer reflection is
often strongly dependent on the core index.

Thus, in the general case, guidance/reflection of light within a medium of index lower than
that of both layers requires knowledge of the coupled resonant response of both layer types, as
described by Ref. [18] via the Stratified Planar Anti-Resonant Reflecting Optical Waveguide
(SPARROW) model. This is in contrast to the guidance mechanism of other common ARROW
waveguides in which the core index is equal to that of the lowest cladding layer, where it is
well known that only high index layer resonances dominate the spectral behaviour [18–21].
The SPARROW model is an extension of the ARROW concept to cases of effective mode
indices equal to or less than the lowest layer index [18] and is a generalisation of the model of
Archambault et al. [22].

Light guidance in liquids via I-ARROWs has recently been demonstrated, e.g., Refs. [4, 5,
9, 17, 23]. Of most relevance here are the results of Campopiano et al. [8] in which high-loss
transmission features were shown to shift with the core index at a sensitivity of ≈ 555 nm/RIU
(RIU: refractive index unit). Bernini et al. [16] demonstrated a similar effect but by altering not
the core index but that of one of the cladding layers which was itself a fluid channel.

Similar spectral shifting effects should also translate to fiber structures (Fig. 1). Bragg fibers
are well known for their ability to guide light with low transmission losses due to the Bloch
wave bandgaps produced by their binary layered cladding [3, 10, 11, 24]. Much like reso-
nances [18], the spectral properties of bandgaps are not only dependent upon the layers’ prop-
erties, but also upon the angle of incidence and the refractive index from which the interacting
light is incident [3,18,24,25], e.g., from within the liquid core of a filled waveguide. The present
work is an extension of the results presented by the authors in Ref. [26], which was the first
demonstration of the spectral effects of systematically changing the core index of a Bragg fiber.
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This effect was also demonstrated in the regime of low refractive index contrast by Qu and
Skorobogatiy [27] where an application to bulk refractive index sensing was demonstrated: a
sensitivity of ≈ 1400 nm/RIU was achieved for aqueous solutions of salt (indices from ≈ 1.33
to 1.38). As discussed later (end of §4.1), this relatively large sensitivity was due to the low
refractive index contrast between both cladding layers and the core.

Here, the regime of high index contrast is considered, requiring a more general theoreti-
cal analysis than the low contrast regime since low index limiting approximations cannot be
made. Building upon the SPARROW model [18], we derive an analytical theory for the anal-
ysis of arbitrary binary layered systems with variable effective indices (ñ) and apply it to the
case of variable core indices in multilayer waveguides. We derive a simple expression for the
approximation of the center of arbitrary bandgaps, and their sensitivities, over arbitrary ñ; the
expression is simple in that it can be evaluated directly with input of only the layer refrac-
tive indices and thicknesses and the orders of the desired cladding bandgaps/resonances. These
approximate analytical expressions are then confirmed against a full Bloch bandgap analysis.
The new theory can be applied to any system with oblique incidence upon a binary structure
with arbitrary layer indices from an arbitrary refractive index or incidence angle.

We also experimentally demonstrate the filling of a hollow-core dielectric Bragg fiber (Fig. 1)
with liquids of various refractive indices. The fiber used has a relatively large index contrast be-
tween the cladding layers themselves and between the layers and the core. The transmission
peak within the fundamental bandgap is observed to shift to shorter wavelengths for increas-
ing core index; this effect is analysed in detail by comparing the experimental results to the
novel theory developed within, together with a full Bloch wave bandgap analysis. The results
highlight the importance of considering the cladding layer material dispersion.

Section 2 presents the setup and results of the Bragg fiber filling experiment. Required back-
ground theory is presented in § 3 (Bloch wave and resonance theory) with a comparison of the
experimental results with the Bloch wave analysis. Section 4 develops the new analytical theory
describing the bandgap center and sensitivity approximation and compares it to the experimen-
tal results. Section 5 presents a discussion and conclusion.

2. Experiment – liquid filled Bragg fiber

The Bragg fiber used for this work was similar to those reported in Refs. [10,11]. Here, however,
instead of guiding light in the near- to mid-infrared when empty, our fiber had a transmission
peak centered in the visible at λ ≈ 700 nm. A 15 cm length of this fiber was used in the
following experiments. The hollow core had diameter tcore ≈ 330 μm and was surrounded by
a periodic cladding of concentric rings with 9 pairs of layers consisting of Arsenic Trisulphide
(As2S3) chalcogenide glass and Poly-ether Imide (PEI) polymer of thicknesses t1 ≈ 76 nm
and t0 ≈ 124 nm, respectively. The cladding was terminated by a thick protective jacket of
PEI producing a total outer diameter (OD) of 585 μm. The first and final As2S3 layers of the
cladding were half-thickness so as to minimize guided surface states (which, through coupling,
can introduce loss features in the core transmission spectrum).

In the regimes of interest here, As2S3 and PEI have non-negligible material dispersion.
Figure 2 shows the refractive indices of the two materials over the wavelength range of interest.
The curves are fits to experimental datapoints (measured via an ellipsometric technique [31]):
an 8th-order Gaussian series (∑8

n=0 e(x−an)
n/bn) is optimized (over an and bn) to fit the data

to within a 95% confidence interval. The results are two continuous interpolation functions
nAs2S3(λ ) and nPEI(λ ). This fit was used instead of a conventional Sellmeier fit (a series of in-
verse powers of wavelength) for reasons of convenience (a fitting routine was readily available).
It is assumed that the refractive indices of the layers do not change from these distributions dur-
ing the fiber drawing process – a reasonable approximation for these fibers [11].
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Fig. 2. Material dispersion data for the materials constituting the Bragg fiber layers: As2S3
(top) and PEI (bottom).

Fig. 3. A schematic of the Bragg fiber filling and spectral measurement configuration. The
light beam exiting the fiber is (arbitrarily) colored to represent the spectral filtering effect
upon the white light due to the cladding structure. Each cleaved end of the Bragg fiber is
hermetically sealed within its own liquid-filled windowed cell, as shown in the zoom-in
region in the bottom right of the figure.

To fill the fiber and measure the transmission spectra, a hermetically sealed filling apparatus
was employed (Fig. 3): each end of the fiber was pierced though the rubber membrane of sealed,
windowed cells. The cells were hand made, each consisting of the top of a capped vial and a
microscope slide. For each, the top of a vial was cut from its body using a glass-cutting saw,
then polished, cleaned and adhered to a clean slide. The join was sealed with a silicon based
sealant, providing both a hermetic seal and sufficient mechanical stability. The sealant appeared
to be chemically stable with all liquids used for the filling experiments.
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Fig. 4. Left: measured transmission spectra for the filled and unfilled Bragg fiber (as per
the schematic of Fig. 3). The peaks are labelled and color coded to indicate an empty fiber
(ncore ≈ 1) and the fiber filled with liquids of refractive indices nliquid ≈ 1.4018, 1.4720 and
1.5780. Right: spectral positions of the peaks’ maxima vs. the core refractive index. The
color matched horizontal rectangular regions correspond to the TM bandgap for the given
core index (cf. Fig. 5, bottom). Horizontal lines, right: the position of Pμ (an approximation
of the bandgap central frequency, § 4) at the given ncore.

The ends of the fiber sample were inserted into their own windowed cell by using a hollow
needle to penetrate the seal and feed through the fiber, then removing the needle to seal the
membrane around the fiber. The cells and fiber could be filled with liquids under pressure using
syringes. In this way, light could be free-space coupled through the cell windows and liquid
reservoir and into the fiber, avoiding optical issues such as scattering due to bubbles or menisci.

The light source used (Fig. 3) was a microstructured optical fiber (MOF) based supercontin-
uum white light source (Koheras SuperKTM Compact). The liquids used to fill the fiber were
‘Immersion Liquids’ from CargilleTM with refractive indices 1.4019, 1.4620 and 1.5780 (all
standardized at a wavelength of λ = 589.3 nm at a temperature of 25◦C). According to the
product data, the chromatic dispersion of the liquids was negligible compared to the dispersive
properties of the fiber materials, modes and bandgap edges and so was not considered here. All
liquids used were relatively transparent over the entire visible range so that, compared to the
waveguide losses, the liquid material losses were negligible over the considered spectrum. The
light transmitted through the fiber was subsequently coupled into a spectrum analyser (Fig. 3)
with spectral resolution δλ = 0.05 nm. Each trace of the output spectrum was point-averaged
over 200 samples to increase the signal to noise ratio.

Figure 4 shows the measured transmission spectra of the Bragg fiber when empty, ncore ≈ 1,
and when filled with each liquid, ncore ≈ 1.4018,1.4720,1.5780. Each spectrum is normalized
to its own maximum value, i.e., no relative loss information is contained in this representation.
There is a clear trend followed by the set of peaks: as the core index increases, the transmission
wavelengths monotonically decrease, shifting across almost the entire visible spectrum; from
right to left in Fig. 4, the peaks have maxima at wavelengths of λpeak ≈ 700 nm,555 nm,533 nm
and 500 nm, respectively. The trend is almost linear (Fig. 4, right) due to the layers’ material
dispersion having the effect of ‘straightening out’ the bandgap edges (discussed later, § 3.1).
Also, the peak width appears to initially decrease and then increase again: from right to left, the
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Table 1. Summary of the Filled Bragg Fiber Transmission Peaks

ncore λpeak(nm) ΔλFWHM(nm) Color

1 (empty) 700 nm 30 nm Dark Red

1.4018 555 nm 21 nm Yellow

1.4720 533 nm 33 nm Green

1.5780 500 nm 40 nm Green-Blue

peaks have full widths at half-maximum of 30 nm, 21 nm, 33 nm and 40 nm, respectively. This
behavior coincides with what is qualitatively expected of the fundamental TM bandgap and the
associated Brewster condition, discussed below. These results are summarized in Table 1.

In general, the shifting of the transmission peaks with respect to ncore, and thus the sensitivity
of a sensor based on this mechanism, say, is not linear due to the dispersive properties of the
band edges. Here, however, as explained later in § 3.1, the dispersion of the layer materials
themselves has the effect of ‘straightening out’ the band edges; this explains why the shifting
of the peaks follows an approximately linear trend, as shown in Fig. 4 (right). Given this, the
average shifting of the transmission peaks with core index here corresponds to a linear sensi-
tivity of ∂λpeak/∂ncore ≈ 330 nm/RIU. This sensitivity value is comparable with the I-ARROW
refractive index sensor architecture of Ref. [8] discussed above. This result indicates that the
transmission band of multilayer waveguides, such as a Bragg fiber, can be shifted significantly
upon altering the core index (almost the full visible spectrum in this case); highlighting the po-
tential of Bragg structures for applications to tunable waveguides and resonators or to refractive
index sensing (e.g., Refs. [7, 26, 27]).

Note that the high index contrast regime presented here produces a dynamic range larger than
that shown by the low index contrast equivalent presented in Ref [27]: from ncore ≈1.4018 to
1.5780 (Δncore ≈0.176) vs. ncore =1.33 to 1.38 (Δncore ≈0.05); about a 3.5 times larger dynamic
range. This increase in dynamic range is aided by the omnidirectional nature of the bandgap
used here: the gaps are open for all effective indices (Fig. 5, § 3.1), save for the TM gap closure
at the Brewster condition (§ 3.1), allowing the core index to continuously deviate far below n0

without forcing all guided light out of the bandgap due to complete gap closure [18].

3. Background theory and comparison with experiment

Background concepts required for the development of the new theory in § 4 are now presented,
based on Bloch wave analysis and the aforementioned layer resonance (SPARROW) model.
The Bloch wave bandgap analysis is confirmed against the experimental results above.

The interaction of light with a binary layered structure, such as guidance within a Bragg
fiber, has a strong dependence on the normal incidence angle upon the structure, labelled θ in
Fig. 1. For a given plane wave wavevector with amplitude ki = nik (Fig. 1), where k = 2π/λ
(λ is the free-space wavelength) and ni is the dielectric refractive index the wave is supported
in (ncore ≤ n0 < n1, Fig. 1), both ni and θ affect the amplitudes of the wavevector components
normal and parallel to the layers: ki⊥ = nikcosθ and ki‖ = nik sinθ , respectively. The effective
refractive index of the wave is defined as ñ = ki‖/k. Note that ki‖ is often represented in the
literature as β and called the propagation constant (having the same value in all regions).

3.1. Bloch wave bandgaps in 1D photonic crystals

The calculation of the Bragg stack Bloch wave bandgaps discussed here are calculated as fol-
lows. For an infinite number of layers in a Bragg stack, a transfer matrix analysis together with
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Fig. 5. Top: the fundamental bandgap 〈m1,m0〉= 〈1,0〉 of the used Bragg fiber, neglecting
material dispersion of the layers (with material indices assumed to be those at λ = 700 nm).
Bottom: the same spectrum with layer material dispersion (Fig. 2). Solid black curve: center
of the TE bandgap (λ Bloch

c , mean of the edge points in k for a given ñ). Dashed black curve:
center of the TM gap. Green curve: parametric central gap point Pμ ; note the very close
overlap with the TE and, especially, TM gap centers. Horizontal lines: ñ = ncore (colors as
per Fig. 4). Dashed lines: ñ = nB (white, Brewster) and n0 (cyan, low layer index).

the Bloch-Floquet theorem produces a Bloch wave existence condition [3, 25, 30]:

cosφ1 cosφ0 −Λsinφ1 sinφ0 = ζ , (1)

where φi = k⊥ti is the phase accumulated by the plane wave component transverse to the stack
within the ith layer type. The transverse electric (TE) and transverse magnetic (TM) polarization
forms of Λ are ΛTE = [k1⊥/k0⊥ + k0⊥/k1⊥]/2 and ΛTM = [n2

0k1⊥/n2
1k0⊥ + n2

1k0⊥/n2
0k1⊥]/2.

Bloch modes only exist for ζ values in the range ζ = [−1,1] (e.g., Refs. [3, 25, 30]). Bloch
mode allowed bands thus occur for |ζ | ≤ 1 and bandgaps for |ζ |> 1.

The Bloch wave existence condition of Eq. (1) is used to evaluate the bandgap regions
shown in Fig. 5 for both cases of constant layer index [set to ni = ni(λ = 700 nm) – Fig. 5,
top] and of layer material dispersion [ni = ni(λ ) – Fig. 5, bottom]. These Bloch spectra are
based on the layer parameters (ti and ni; see § 2) of the fiber used in the experiment above.
Figure 5 also shows plots of the refractive indices of the core liquids, low-index layer (the
high-index value is beyond the axis limits) and the effective index of the Brewster condition:
ñB = n1n0(n2

1 +n2
0)

−1/2 [18]. Note how the lines that depend on the layer indices (n0 and Brew-
ster – dashed lines) are curved in the material dispersion case due to the index behaviour shown
in Fig. 2, but the core indices (solid lines) are straight in both cases due to negligible material
dispersion of the liquids used. In both cases, the Brewster line coincides with the TM gap clo-
sure, as expected [3, 18, 25]; TM polarized light incident at the Brewster angle is completely
transmitted through an interface, implying a bandgap cannot exist.
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Figure 5 demonstrates how the material dispersion, shown in Fig. 2, has the effect of ‘straight-
ening out’ the band edges when compared to the fixed-index case, highlighting the importance
of incorporating material dispersion in any analyses where it is appreciable. Indeed, only once
the material dispersion is considered do the measured transmission peaks of Fig. 4 fall within
the Bloch bandgap regions of Fig. 5 at their respective ñ; this is demonstrated in Fig. 4 (right).
Note that the TM bandgaps appear to predominantly determine the transmission spectra peak
positions, as may be expected due to the random polarization of the input light and the large
number of modes supported for the length of fiber used (it was not within the effective few-
or single-moded regime which is dominated by the low loss TE01 mode [29]): light is thus
coupled to a combination of TE, TM and hybrid modes, the latter two of which contain TM
polarization components which are restricted to the TM bandgaps (which always sit within the
TE gaps [18]).

The center of a given gap at a particular ñ is defined here to be the mean of wavenumber
(k = 2π/λ ) values of the band edges (|ζ |= 1) either side of a bandgap at a given value of ñ:

kBloch
c =

kBloch
+ + kBloch−

2
, (2)

where kBloch
+ and kBloch− are the values of k at which a given ñ line intersects the bandgap edges.

Note that λ values aren’t averaged since the gaps (or more precisely, the resonances of a given
layer [18]) are periodic in k (and frequency ω , etc.) not λ . The Bloch gap central wavelength
λ Bloch

c is thus calculated as λ Bloch
c = 2π/kBloch

c .
Note that the bandgap considered here is omnidirectional: the TE bandgap is open for all

effective indices and the TM gap closes only at ñB as it must, aiding the increase in dynamic
range as discussed above.

3.2. Layer resonances and the SPARROW model

Previously, the authors demonstrated how the bandgap spectrum of an arbitrary Bragg stack
conforms to the behaviour of the resonances of the individual layer types, leading to the def-
inition of what was termed the Stratified Planar Anti-Resonant Reflecting Optical Waveguide
(SPARROW) model [18]. The details of this model are recast here in a way that leads directly
into the new theory derivation, analyses and discussions of § 4.

Resonance within a given layer type occurs when, for a single pass across the layer, the
wavevector component transverse to the stack (k⊥) accumulates phase as an integer multiple of
π: φi = k⊥ti = miπ for mi ∈ Z

+ [18]. It was shown in Ref. [18] how the resonance conditions
change with a wave’s wavelength λ and effective index ñ, corresponding to curves over the
(λ , ñ) plane. For a resonant wave with effective index ñ and resonance order mi within a layer
of index ni and thickness ti, the wavenumber is:

kmi =
miπ

ti
√

ni − ñmi

. (3)

For a wave in the ith layer type of resonance order mi ∈Z
+, rearranging Eq. (3) for ñmi produces

a function that monotonically increases with k (decreases with λ ) and has an asymptote at ni.
Thus, any given pair of resonance curves of differing layer types, nm1(λ ) and nm0(λ ), must
intersect at a point on the (λ , ñ) plane. In Ref. [18] these intersection points P were shown to
be identical to the Bloch gap closure points when both layers are in resonance (φ = miπ for
mi ∈ Z

+, i = 1,0), and were also shown to describe the central point of a gap when both layers
are antiresonant [φi = (mi+1)π/2 for mi ∈Z

+, i= 1,0]. It was also observed that all resonance
curves lie within the Bloch bands and, further, that each Bloch bandgap was enclosed by a set
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of resonance curves, forming a bounding region. Note that P and these related quantities can be
expressed in simple, anayltic forms [e.g., the generalized form of P shown later in Eq. (5)].

Similar to the Bloch bandgap center kBloch
c above, the center of a bounding region (mid-point

of two resonances kmi and kmj for {i, j}= {1,0}) at a given ñ, instead of two band edges (kBloch
+

and kBloch− ), can be defined as:

kres.
c =

kmi(ñ)+ kmj(ñ)

2
, (4)

where kmi, j(ñ) are the resonance curves [given by Eq. (3)] of the high- (order m1) and/or low-
index (order m0) layers forming adjacent sides of the bounding region of interest; i and j take
values 1 or 0 depending upon which curves form the bounding region at the given ñ [18]. (kres.

c
was labelled k′c in Ref. [18].) Note that this expression is analytic, due to the simple forms of the
resonance curves. Since all resonance curves lie within the Bloch bands, kres.

c is also an analytic
approximation to the nontrivial and transcendental Bloch bandgap center (Eqs. (1) and (2)).
This approximation, while simple and applicable to arbitrary bound regions and gaps, tends to
follow the curvature of the resonances and not the Bloch edges, producing sharp kinks where
the bounding region curves change between km1(ñ) and km0(ñ) (at an intersection point) over a
range of ñ.

Next, a more accurate analytic, resonance-based approximation to the gap center that doesn’t
suffer from these discontinuities is derived.

4. New theory and comparison with experiment

In this section a novel approximation to the central frequency of an arbitrary binary stack
bandgap for arbitrary ñ � n0 is derived in a simple analytical form.

This novel theory is a general analytic tool for the analysis of binary layered systems with
variable effective indices ñ and is here applied to the case of multilayer waveguides with vari-
able core refractive indices. The theory produces a simple analytical approximate expression
for the calculation of the gap center – simple in that the expression requires only input of the
layer refractive indices and thicknesses and the order of the layer bandgaps/resonances of inter-
est. From this, an analytical expression for the sensitivity to changes in core index is derived.
Both the bandgap center and sensitivity expressions are shown to be a good approximation
when compared to the calculated Bloch gap center, even for non-negligible material dispersion.
The above experimental results are used as a specific example for validation, where it is also
shown how material dispersion of the layers must be considered in order for this model (as for
the bandgap spectra above) to agree with the observed filled Bragg fiber transmission spectra.

Typically the center of a bandgap must be numerically calculated after the Bloch wave
bandgap spectrum is calculated [e.g., kBloch

c in Eq. (2)]. The Bloch condition, Eq. (1), is inher-
ently transcendental, restricting analyses to ‘one way’ calculations. This makes physical insight
difficult to extract and restricts the design process to iterative forward-solving. The analyticity
of the expression derived below overcomes the issues of using the transcendental Bloch condi-
tion and does not explicitly depend upon a Bloch wave analysis. This allows ready identification
of fundamental physical behaviours and rapid calculations for device design.

This gap center approximation is made by generalizing the intersection point P of the SPAR-
ROW model [18] discussed above. For this, consider the case of arbitrary single-pass phase
accumulation within each layer, not just the cases of resonance (integer multiples of π) or an-
tiresonance (half-integer multiples of π). By then enforcing the restriction that the combined
phase accumulation of both layer types is a constant integer multiple of π (not φi individually),
φ1 +φ0 = π,2π, . . .= const., P will sweep out a parametric curve within the bound region and
hence within the associated bandgap (since, as discussed, each bound region houses a bandgap).
Thus, P defines a ‘central curve’ through a given bandgap.
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Formally, this generalized form of P is expressed as:

Pμ = (kμ , ñμ) =

⎛

⎝π ·
√

ρ2
1 −ρ2

0

n2
1 −n2

0

,

√
n2

1 −n2
0η2

1−η2

⎞

⎠ , (5)

where ρi = miμ/ti (i = 1,0) and η = ρ1/ρ0. The parametrized phase orders are de-
fined here as m1μ = m1 − μ and m0μ = m0 + μ with mi ∈ Z

+ and μ ∈ R
+, represent-

ing (via μ) arbitrary phase accumulation within the high- and low-index layers, respec-
tively. The addition of the accumulated phases in each layer thus produces a constant value
φ1 +φ0 = (m1μ +m0μ)π = (m1 +m0)π = π,2π, . . .= const. ∀ (k, ñ) on Pμ , as asserted above.
Note that this expression is simple in that it returns the k along Pμ at an effective index ñ given
only the values of the layer properties ti and ni, the order of the bandgap of interest 〈m1,m0〉
(cf. Ref. [18]) and the parametric order value μ which effectively determines the position along
the Pμ curve. In practice, this expression can be easily evaluated over a range of μ to define a
curve through a given gap over (λ , ñ) as shown in Fig. 5.

The form of Pμ is identical to P defined in Ref. [18] except that the orders miμ are gener-
alized to be continuous (μ ∈ R

+) instead of discrete integers or half integers (μ = 0 or 1/2),
representing arbitrary phase accumulation within each layer instead of just resonance and an-
tiresonance, respectively. The integer terms mi ∈ Z

+ correspond, via Pμ , to the local bound
region of order 〈m1,m0〉 (a nomenclature suggested previously [18]). In this way, given a spe-
cific bound region 〈m1,m0〉, Pμ traces out a curve within the region for μ = 0 → 1, starting at
the maximal bounding point P0 [Pμ of order (m1,m0)], passing through the central point P1/2

[Pμ of order (m1 − 1/2,m0 + 1/2)] and finishing at the minimal bounding point P1 [Pμ of order
(m1 −1,m0 +1)].

In other words, when compared to Bloch bandgap spectra, the curve swept out by Pμ for
varying μ passes through the closure points (P0 and P1) and the approximate central point (P1/2)
of an arbitrary bandgap (when these points exist in the domain 0 ≤ ñ ≤ n0 for a given bound
region 〈m1,m0〉). Pμ thus provides an approximation to the central λ or k of a given bandgap
for arbitrary ñ within the gap. Like the SPARROW model it is inherited from, this generalized
central curve definition holds for any alteration in ñ (or k), such as when the core size or shape
is altered, higher-order modes are considered or when, as for the case here, the core refractive
index of a Bragg waveguide is changed directly.

In the cases considered here, when compared to the calculated Bloch bandgap center kBloch
c

[Eq. (2)], when ignoring material dispersion, Pμ provides an agreement to better than 0.5% for
the TM bandgap and 4% for the TE bandgap central wavelengths for all core refractive indices
considered. The agreement is shown in Fig. 5 (top) where the Pμ curves appear to lie on top
of the calculated Bloch bandgap center curves (λBloch

c ). The dispersive layer index case (Fig. 5,
bottom) produces slightly larger wavelength differences of 0.8% and 5% for the TM and TE
gaps, respectively. In both cases, the TE gap center begins to deviate for higher ñ due to the fact
that Pμ appears to intercept the TM gap closure point (PB, due to the Brewster effect [3,18,25],
as above) which doesn’t coincide with the TE gap center. Also, the Pμ approximation to the gap
center breaks down as ñ → n0 for gaps terminating on the low-index line ñ = n0, where kres.

c
[Eq. (4)] and other simple expressions provide a better approximation, e.g., Ref. [27]; these
latter points will be discussed in future work.

Given the close agreement between Pμ and the Bloch bandgap center, Pμ also shows a rea-
sonable agreement with the experimentally measured transmission peak positions, compared
directly in Fig. 4.
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4.1. Sensitivity to refractive index

An analytic expression for the sensitivity of λ to changes in ñ along the Pμ curve is now derived,
extending the theory developed above. For large core waveguides, where ñ ≈ ncore, this is thus
a measure of the sensitivity of the transmission peak central wavelength to changes in the core
index. As for the definition of Pμ , this treatment is applicable to arbitrary bandgaps of arbitrary
binary stacks (waveguide or otherwise). Using this general expression, an example is given
based on the fundamental bandgap of the Bragg fiber cladding structure considered above.

Given that Eq. (5) is analytic, one can derive a closed form for the partial derivative of ñμ
versus the wavenumber kμ (hence frequency or wavelength): ∂ ñμ/∂kμ . The inverse of this,
∂kμ/∂ ñμ , is thus a measure of the sensitivity of a bandgap center to changes in the effective
refractive index of the guided light. Note that this closed form derivation assumes the refrac-
tive indices are locally flat over the spectrum, i.e., at a wavelength λ ′, the index takes value
ni(λ ) = ni(λ ′) according to it’s material dispersion (e.g., Fig. 2) but one assumes ∂ni/∂λ = 0.
Later, this approximation is compared to the full numerical derivative which inherently includes
the material dispersion derivative (∂ni/∂λ �= 0). The approximate closed form of the sensitivity
is now derived.

The coordinates of the Pμ = (kμ , ñμ) curve are related via the parameter μ . In general, then:

∂ ñμ

∂kμ
=

∂ ñμ

∂η
· ∂η

∂ μ
· ∂ μ

∂kμ
=

∂ ñμ

∂η
· ∂η

∂ μ
/

∂kμ

∂ μ
, (6)

where the final step results from the parametric nature of the relationship between ñμ and kμ .
From Eq. (5):

∂ ñμ

∂η
=

η
1−η2

n2
0 − ñ2

μ

ñμ
, (7)

and note that:

∂η
∂ μ

=− t0 + t1η
(m0 +μ)t1

. (8)

Similarly, from Eq. (5):

∂kμ

∂ μ
=− π2

(n2
1 −n2

0)kμ

(
m1 −μ

t2
1

+
m0 +μ

t2
0

)
. (9)

Combining these via Eq. (6) and inverting the numerator and denominator:

∂kμ

∂ ñμ
= π2 1−η2

(n2
1 −n2

0)η
(m0 +μ)t1

t0 + t1η

(
m1 −μ

t2
1

+
m0 +μ

t2
0

)
ñμ

(n2
0 − ñ2

μ)kμ
. (10)

Defining λμ = 2π/kμ , implying ∂kμ =−(k2
μ/2π)∂λ , Eq. (10) can be expressed in terms of

wavelength as:

∂λμ

∂ ñμ
=

2π
k2

μ

∂kμ

∂ ñμ

=−2π3 1−η2

(n2
1 −n2

0)η
(m0 +μ)t1

t0 + t1η

(
m1 −μ

t2
1

+
m0 +μ

t2
0

)
ñμ

(n2
0 − ñ2

μ)k
3
μ
. (11)

Equation (11) thus describes the sensitivity of the λμ component of the Pμ point for changes
in ñμ [as does Eq. (10) for the sensitivity of kμ ]. It thus also provides an approximation to
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Fig. 6. Sensitivity of the exact and approximate center of the fundamental bandgap to
changes in ñ for the layer properties described in § 2. Top: without material dispersion
[ni = ni(λ = 700 nm)]. Bottom: with material dispersion [ni = ni(λ )]. Black: numerically
calculated sensitivity of the Bloch bandgap center [from kBloch

c , Eq. (2)]; solid: TE; dashed:
TM. Green: the wavelength sensitivity of the Pμ point in to changes in ñ; solid: analytic
approximation to derivative of Pμ neglecting material dispersion derivatives [Eq. (11) –
setting ∂ni/∂λ = 0 but allowing ni = ni(λ )]; dashed: numerical derivative of Pμ including
material dispersion [∂ni/∂λ �= 0].

the sensitivity of an arbitrary Bloch bandgap center to changes in ñ. In the large-core regime
here where ñ ≈ ncore, this is thus an approximation to the sensitivity of the Bloch bandgap
center (and hence waveguide transmission peak) to changes in the core refractive index. This
expression for the sensitivity can be evaluated for any given point (any value of μ) on the central
curve Pμ = (kμ , ñμ) and obviates the need for numerical derivation of Pμ or kBloch

c over (k, ñ)
(keeping in mind the approximation of locally flat material dispersion: ∂ni/∂λ = 0).

For the case of non-dispersive layer materials, where ni = const., Eq. (11) provides an excel-
lent approximation to the Bloch bandgap sensitivity ∂λ Bloch

c /∂ ñ (where λ Bloch
c = 2π/kBloch

c ).
Figure 6 (top) demonstrates this for the Bragg fiber considered above. The Bloch gap sensitivity
is calculated numerically, directly from kBloch

c [Eq. (2)]. Due to the good agreement between Pμ
and kBloch

c (Fig. 5), there is an excellent agreement between their derivatives: the TM gap sensi-
tivity agrees to better than 0.5% and the TE to better than 8.5% for all wavelengths considered.

While Eq. (11) doesn’t explicitly include material dispersion [dispersive indices ni = ni(λ )
are permitted but ∂ni/∂λ = 0 is enforced] it can be used as a reasonable analytic approximation
to the Bloch bandgap center sensitivity when material dispersion cannot be neglected, demon-
strated in Fig. 6 (bottom). In this case, kμ and ñμ are calculated from Eq. (5) via root-finding
and used to evaluate Eq. (11) directly, i.e., Pμ is evaluated with material dispersion, but the eval-
uation of the derivative assumes the dispersion of the layer indices is locally flat (∂ni/∂λ = 0).
The agreement deviates significantly toward shorter wavelengths as may be expected – this is
the region where the material indices fluctuate most (cf. Fig. 2) – but is still within 50% of the
TM Bloch gap sensitivity for λ ≈570 nm, and much better for longer λ .

The complete inclusion of material dispersion (∂ni/∂λ �= 0) results in more complex expres-
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sions. One straightforward alternative is to use numerical root-finding of the Pμ coordinates (as
above) but then also numerically calculate the local slope, rather than approximating it ana-
lytically as per Eq. (11); this inherently includes the spectral derivatives of the layer materials
but requires a significant number of calculated points, and hence iterations, for sufficient pre-
cision. The evaluation of the Bloch gap sensitivity in Fig. 6 was also calculated numerically
in this fashion and hence also inherently includes the full material dispersion. Figure 6 (bot-
tom) shows the comparison between these numerical derivatives of Pμ and the Bloch bandgap
central wavelength when the layers’ material dispersion is considered. As expected from their
good agreement in absolute value as per Fig. 5, their sensitivities also agree well: below 1% for
λ � 575 nm and better than 9.5% over all wavelengths considered for the TM gap centre.

The numerical derivatives of the Bloch center and Pμ (both including material dispersion)
agree well with experiment. From four data points, the experimental results implied an approx-
imately linear sensitivity of 330 nm/RIU, § 2. As Fig. 6 shows, from a continuous range of
points over the wavelengths of interest (λ=700 nm–500 nm), the numerical calculations predict
sensitivities of ∂λ Bloch

c /∂ ñ ≈ 200–383 nm/RIU and ∂λμ/∂ ñ ≈ 200–422 nm/RIU. The analyt-
ical approximation of the latter [Eq. (11)] agrees well with these values for longer wavelengths
but deviates, increasing to ≈719 nm/RIU at λ=500 nm, due to the appreciable material disper-
sion at shorter λ (Fig. 2). In regimes of non-negligible dispersion, Eq. (11) is thus useful as a
rapid design tool, with the full numerical values required for more precise calculations.

4.2. Sensitivity trends

The analytical form of Pμ [Eq. (5)] and hence ∂λμ/∂ ñ [Eq. (11)] allows some fundamental
physical observations to be made with respect to the sensitivity. The case considered here has
layers of a high refractive index contrast. The 1/(n2

1−n2
0) dependence of ∂λμ/∂ ñμ implies that

layers with a lower refractive index contrast would produce a more sensitive response to ñ (core
index here). Also, the 1/(ñ2−n2

0) dependence of Eq. (11) implies that ñ variations closer to the
low layer index (ñ = n0) will induce more sensitive spectral shifts. One can see from Fig. 5, for
example, that this is the case since the gaps generally flatten out as ñ → n0 over (λ , ñ), and is
demonstrated explicitly by the sensitivity curves of Fig. 6.

This suggests that Bragg waveguides with a low contrast between the cladding layer re-
fractive indices should be more sensitive to changes in the core index than those with a high
contrast, especially when the core refractive index is also close to the lowest of the cladding
layer indices. Indeed, this has recently been shown experimentally by Qu and Skorobogatiy [27]
who demonstrated refractive index sensing with sensitivities of ≈ 1400 nm/RIU in aqueous so-
lutions via a polymer Bragg fiber made from low-index polymers with a low refractive index
contrast. The low refractive index values of the cladding layers and their low contrast with
each other allowed this regime of increased sensitivity to be reached, as just discussed. Indeed,
such polymers are possibly the only presently practical materials with which low contrast with
aqueous solutions could be achieved within a hollow Bragg waveguide.

Alternatively, these identified trends can be used in reverse to design structures that are al-
most invariant to changes in the core index: high index contrast layers and/or core indices far
from the layer indices. This would be useful in scenarios in which a sample’s refractive index
might fluctuate but a constant guided spectrum is desired.

Note that the theory and results developed and used here are applicable to layers of arbitrary
refractive index, not just to the regime of low index contrast, say. It is thus useful as an analysis
and design tool for many platforms and devices of interest today with arbitrary layer indices
(of high or low contrast) and arbitrary core (ncore) or effective mode indices (ñ) – up to the
aforementioned ñ → n0 approximation limit (§ 4) – such as most modern hollow Bragg fibers
and I-ARROWs that can be filled with liquids.
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5. Discussion and conclusion

The shifting of the transmission spectrum of a Bragg fiber with high cladding layer index con-
trast has been experimentally demonstrated by filling the hollow core with liquids of various
refractive indices. An analytical model was derived to describe the spectral behaviour of such
binary layered systems and was compared to the experimental results.

The Bragg fiber used in this work demonstrated a transmission peak sensitivity to core refrac-
tive index of ∂λpeak/∂ncore ≈ 330 nm/RIU, which is comparable with the results of a similar
I-ARROW based architecture (which relies on detection of a transmission minimum, not max-
imum as used here) [8]. This sensitivity is lower than the low index contrast Bragg fiber sensor
demonstrated by Qu and Skorobogatiy [27], but the cladding layer index contrast here is much
higher, producing a larger dynamic range in core index aided by the omnidirectional nature
of the bandgap; the main purpose of the results presented here was to analyse the response of
binary layered systems to light of arbitrary effective indices, in both theory and experiment,
rather than the optimum design of a sensor device.

Reasonable agreement with what is expected from a Bloch wave based analysis was
achieved, but only when the material dispersion of the layers was incorporated since the layer
materials demonstrate non-negligible dispersion over the wavelength range of interest. The lay-
ers’ material dispersion acted in such a way that the band edges ‘straightened out’ compared to
the equivalent bandgap spectrum in the absence of material dispersion. This material-induced
band edge straightening was verified both in experiment (by the approximate linearity of the
peak shifting with core index, § 2) and theory (by calculation of the bandgap maps and centers
incorporating the material dispersion, § 4).

A novel theory was developed, defining a simple analytic expression for Pμ [Eq. (5)]: a
generalized, parametric, version of the intersection point P of the SPARROW model [18]. The
expression is simple in that it requires only the input of the layer parameters ni and ti and the
bandgap/resonance order 〈m1,m0〉 of interest. Pμ was shown to be a close approximation to the
central frequency of the considered bandgap spectra. For the Bragg fiber cladding considered
here, Pμ approximated the TM Bloch bandgap central wavelength to better than 0.8% for all
cases considered. For large core waveguides (where ñ ≈ ncore), this analytic expression can be
used to analyse and design binary layer waveguides with low-index cores for arbitrary layer
parameters, core indices, and bandgaps/resonances.

The analyticity of Pμ allowed an analytic expression for its derivative to be found (∂λμ/∂ ñμ ),
thus describing the sensitivity of the approximate bandgap central frequency to changes in the
effective index ñ (by altering the core index, say). Good agreement between the analytic Pμ
sensitivity and the numerically calculated Bloch bandgap center sensitivity was shown (Fig. 6).
The sensitivity expressions also agreed well with the measured sensitivity of the filled Bragg
fiber considered (≈ 330 nm/RIU), which included the effects of nontrivial layer material dis-
persion while maintaining analyticity (by assuming the layer indices, while variable with λ ,
are everywhere locally flat). The expression was used to show how the sensitivity could be
enhanced by using low refractive index contrasts between cladding layers and/or between the
core and cladding layers or, alternatively, how the sensitivity could be reduced by using high
contrasts to produce devices with invariant spectral properties under fluctuating sample indices.

These results highlight some of the key features of variable core index multilayer waveg-
uides, emphasizing the importance of low-index–core and liquid–core binary layered cladding
waveguides (such as Bragg fibers or I-ARROWs) in sensing, microfluidics, fiber lasers, and
novel nonlinear devices. These results can also be applied to investigations of the design and op-
eration of other devices such as binary multilayer reflectors in general, with arbitrary incidence
angle or index, and to structures with a binary cladding such as SEFLs [13] and VCSELs [15]
with cores or cavities of various or varying refractive indices.
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