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The optical response of axially uniform nonlinear photonic bandgap fibers is studied theoretically.

We observe

gap-soliton-like generation and associated bistability, similar to what is typically found in periodically modu-

lated nonlinear structures.

This response stems from the nature of the guided-mode dispersion relations,
which involve a frequency cutoff at zero wave vector.
and minimal coupling to radiation modes come in naturally.

In such systems, solutions with zero group velocities
We term such solitons “cutoff solitons”; they

provide an interesting alternative to gap solitons in periodically index-modulated fibers for in-fiber all-optical

signal processing.
OCIS codes: 190.1450, 230.4320.

Gap solitons and optical switching'~® have been exten-
sively studied in nonlinear dielectric structures with
axial periodicity in their linear refractive properties.
Corresponding experimental realizations include
fiber Bragg gratings®’ and integrated multilayer
heterostructures.® Such systems exhibit spectral
gaps of high reflectivity for wave propagation along
the axial direction. For intense light illumination at
a frequency inside the gap they exhibit solitary wave
solutions, called gap solitons, and introduce a strong
power dependence to the transmissivity, in some cases
resulting in a bistable response. Such systems are at-
tractive for all-optical switching, logic-gate operation,
memory, etc.

Because of the necessity of an axial spectral gap for
their existence, gap solitons have always been studied
in axially periodic systems. In this Letter we show,
for what is believed to be the first time, that similar
complex behavior is also possible in axially uniform
photonic bandgap (PBG) fibers.”® We show that
in the presence of an optical Kerr-type nonlinearity,
axially uniform PBG fibers exhibit gap-soliton-like
generation and associated bistability. This nonlinear
response is a direct consequence of the particular
guided-mode dispersion relation, which involves a
frequency cutoff at £ = 0: tuning the input frequency
below the cutoff provides for an effective axial spectral
gap. This is particularly true because there are
minimal radiation losses (we operate far from the
light line), resulting in a distributed feedback mecha-
nism similar to a Bragg reflector. Also, stationary
solutions with very low group velocities (even 0)
come in naturally at 2 = 0.  We term these solitons
“cutoff solitons” to distinguish them from all other gap
solitons, which have thus far been described only for
axially periodic structures.

We study a two-dimensional (2D) embodiment of
PBG fibers, described in Fig. 1(a). This system
captures the most essential features of the three-
dimensional (3D) fiber, including the guided-mode
cutoff at £ = 0 and the absence of a complete spectral
gap. In Fig. 1(b) we plot the guided mode dispersion
relation in the linear (low-intensity) limit, as calcu-
lated by the finite-difference time-domain (FDTD)
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method. Any small change in linear refractive index
will result in an almost constant frequency shift of the
dispersion relations.

For input frequencies below the cutoff v < w, there
are no available guided states in the core. Assume an
input port consisting of a similar fiber with a higher-
index core n’ and cutoff frequency w., < w.. Low-
intensity incident guided waves with w.' < 0 < w, will
decay exponentially in the axial direction and result
in strong reflection. This is similar to waves that are
incident upon a Bragg reflector and is in contrast to all
other axially uniform fibers. At high input power we
observe a wide range of nonlinear phenomena, such as
bistability and self-pulsing, similar to those found in
nonlinear axially periodic gratings. We study these
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Fig. 1. (a) 2D simulation system: the cladding consists
of alternating dielectric layers of high- (2.8) and low- (1.5)
index with thicknesses of 0.3a and 0.7a, where a is the
period. The core diameter is d = 1.2a, and index n’ =
ny + nylE|?, where ny = 1.6. (b) Linear dispersion rela-
tions calculated by the FDTD method. The cutoff fre-
quency is w, = 0.26215. The gray areas represent both
the cladding and radiation modes.
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phenomena within the limit of small nonlinearities
(which is the experimentally correct limit).

To explore these effects in detail, we perform
time-domain simulations for the system shown in
Fig. 1(a), using the FDTD method. Any choice of
refractive indices and structural parameters for the
linear input and output fibers suffices as long as
o < w.. For example, enlarging the core area would
have the desired effect. For simplicity we just use
a higher-index core of n’ = 1.9. In Fig. 2 we plot
the fiber’s nonlinear response for two nonlinear-core
lengths, L = 5a and L = 8a. A cw excitation with
w. < w < w, is the input for both cases. Fields
and flux are monitored at the output while perfectly
matched layer absorbing boundary conditions are
used to simulate perfect absorption at the edges of the
computational cell.

We obtain two types of response: (i) cw, ob-
served in the smaller L = 5a system, involving
bistable switching between a ¢w low- and a cw high-
transmission state [Figs. 2(a) and 2(b)], and
(i1) pulsating, observed in the larger L = 8a system,
involving bistable switching between a stable low-
and a pulsating high-transmission state [Figs. 2(c)
and 2(d)]. Such a dual response is well known in
grated nonlinear systems. The steady state is the
result of the excitation of a stationary gap-soliton-like
object in the structure. In Fig. 3(b) we plot the field
intensity profile along the nonlinear core for the
resonant transmission point. Although a similar
output response could also be obtained in a simple
nonlinear slab,'? there are important differences. In
a nonlinear slab low-intensity propagation is allowed,
nonlinear feedback occurs entirely at the boundaries,
and bistability results from an intensity-dependent
frequency shift of the resonant transmission con-
dition. In our case low-intensity propagation is
prohibited [as shown in Fig. 3(b)l, and thus non-
linear feedback is axially distributed throughout
the nonlinear fiber. This is achieved because we
operate below cutoff while having minimal coupling
to radiation modes (possible at 2 = 0), which is
equivalent to operating in a gap. Bistability results
from gap-soliton-like excitations, which share similar
physics with gap solitons in nonlinear Bragg gratings.
Since they appear in an axially uniform system,
however, we term them cutoff solitons to distinguish
them.

The transition from a steady solution to a pulsating
one is related to the cutoff soliton’s becoming nonsta-
tionary.® The excited cutoff soliton then propagates
along the core resulting in an output that consists of a
periodic series of pulses. This alternative (convective)
method of energy transfer, nevertheless, also results in
high transmission. Overall, our axially uniform non-
linear system responds similarly to a nonlinear Bragg
grating.

The key feature common to our system and a Bragg
grating is the cutoff, or gap, of the dispersion relations,
found only at £ = 0 in our case. We create a one-
dimensional (1D) model in which the dispersion re-
lations are fit to quadratic forms that include the
nonlinear shift §w:

w(EPP k) = 0, + ak® + 50(EP?),

w'(k) = v, + o'k? (1)
for the nonlinear and linear core regions, respectively.
We write the field in the nonlinear core as the prod-
uct of a normalized transverse distribution F'(x, y)
and a slowly varying amplitude A(z, t), E(r, t) =
Yo {F(x, y) [A(z, t)exp(ikoz)]exp(—iwot) + c.c.}, where
z is the axial direction. From first-order perturbation
theory in small nonlinearities, we find!3~1

wo [na(x,y)no(x,y) (F - FI2 + 2|F|*)dxdy
4 [ no(x, )? |F[2dxdy

X JA@)I? = —y]Az)I%, (2)

dw(z) = —

where the integral is performed over the total
cross-sectional area. Equation (2) is the general 3D
expression. The nonlinear coefficient y is calcu-
lated with the FDTD method as 7y =0.02n¢n2|max
at wo = w.. It is a weakly increasing function
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Fig. 2. (a) Transmission versus input flux S for the L =
5a system and wa/27c = 0.26. The normalized flux S
is defined as S = ngnyS, where S is the electromagnetic
flux through the fiber’s cross section. Both 2D FDTD
(filled circles) and the 1D model (solid and dashed curves
for the stable and unstable solutions, respectively) results
are shown. The unstable solutions (physically unobserv-
able) of the 1D model are represented by the dotted lines.
(b) Output flux during switch-up (path marked by the
upward-pointing arrow) for the L = 5a system. (c) and
(d) Same as (a) and (b) but for the L = 8a system.
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Fig. 3. (a) Linear transmission coefficient versus fre-
quency for the L = 5a system. (b) Normalized intensity
(or local index change &n = ny|E|?) along the nonlinear
core for the L = 5a system.



of frequency, but for simplicity we assume it to
be constant. The other parameters used are
w. = 0.2621527mc/a)[w,/ = 0.244(2wc/a)] and
a = 0.564(ac/27)[a’ = 0.463(ac/2)].

We first calculate the predicted frequency depen-
dence of the linear transmission coefficient for the L =
5a system, obtained via a transfer matrix solution of
the 1D model. This is plotted in Fig. 3(a) along with
the full 2D FDTD data. Excellent agreement is found
above the cutoff. Note that the 1D model does not
show structure below the cutoff, because it ignores the
small coupling with the cladding modes [gray areas in
Fig. 1(b)]. This coupling could be further suppressed
by reducing the index contrast between the different
segments.

In Figs. 2(a) and 2(c) we plot the high-intensity
predictions of the 1D model along with the full 2D
nonlinear FDTD data. Considering the simplicity of
the 1D model, the general agreement is surprisingly
good. The differences in switching intensities can
be attributed to neglecting the frequency dependence
of v, neglecting second-order corrections in vy, and
to nonzero contributions from cladding modes. In
Fig. 3(b) we plot the intensity along the nonlinear core
for the L = 5a system at two different points: at the
peak of the upper transmission branch where a cutoff
soliton has been excited and at the lower branch where
the wave decays exponentially; the 1D model captures
all the essential features of the 2D system’s nonlinear
response.

We next derive an analytic expression for slowly
varying amplitude A. In the frequency domain the
equation for A(z, w — w.)is 92A/9,%2 + k2A = 0, where
we expand around cutoff frequency w., and %k contains
the nonlinear index change (the first-order terms
vanish at cutoff). With the dispersion relations of
Egs. (1), 22 = (0 — w, — 6w)/a and transforming
the slowly varying amplitude equation back into the
time domain we arrive at the nonlinear Schrodinger
equation*

dA . 92A

oA . otA . 24 _
o e 1y|AIA=0. 4)

This is the same equation as the one derived for 1D
nonlinear periodic systems® (with a as the curvature
of the band edge). The main similarities between the
two systems are the form of the dispersion relations
and the existence of a gap. The latter is the marked
difference between cutoff solitons and the usual non-
linear fiber solitons, along with that cutoff solitons
can have any arbitrary group velocity, even zero. Any
nonlinear system with similar dispersion relations is
thus well described by Eq. (4). Such systems include
metallic waveguides, multilayer stacks, PBG fibers,
and photonic crystal linear-defect waveguides.

In conclusion, we have studied an axially uniform
nonlinear system that exhibits gap-soliton-like forma-
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tion and associated switching. The most important
quality of this system is the special nature of the
dispersion relations of the guided modes, involving a
frequency cutoff at zero wave vector. In practical
experimental setups these solitons will physically
behave, in the vast majority of cases, the same as
gap solitons. We term these solitons cutoff solitons
to distinguish them from the usual gap solitons
appearing in axially periodic systems. The ability
to obtain gap-soliton-like formation without imposing
axial periodicity leads to new design and fabrication
opportunities for eventual experimental realization of
all-optical devices.
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