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Dielectric profile variations in high-index-contrast waveguides, coupled mode theory,
and perturbation expansions

M. Skorobogatiy,* Steven G. Johnson, Steven A. Jacobs, and Yoel Fink
OmniGuide Communications, One Kendall Square, Building 100, Cambridge, Massachusetts 02139

~Received 23 December 2002; published 23 April 2003!

Perturbation theory formulation of Maxwell’s equations gives a theoretically elegant and computationally
efficient way of describing small imperfections and weak interactions in electromagnetic systems. It is gener-
ally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielec-
tric contrast profiles standard perturbation formulations fails when applied to the problem of shifted material
boundaries. In this paper we developed coupled mode and perturbation theory formulations for treating generic
perturbations of a waveguide cross section based on Hamiltonian formulation of Maxwell equations in curvi-
linear coordinates. We show that our formulation is accurate beyond the first order and rapidly converges to an
exact result when used in a coupled mode theory framework even for the high-index-contrast discontinuous
dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of such quan-
tities as deterministic PMD and change in the GV and GVD of a mode due to generic profile distortion in a
waveguide of arbitrary cross section. To our knowledge, this is the first time perturbation and coupled mode
theories are developed to deal with arbitrary profile variations in high-index-contrast waveguides.
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I. INTRODUCTION

Standard perturbation and coupled mode theory form
tions are known to fail or exhibit a very slow convergen
@1–6# when applied to the analysis of geometrical variatio
in the structure of high-index-contrast fibers.

In a coupled mode theory framework, eigenvalues o
matrix of coupling elements approximate the values of
propagation constants of a uniform waveguide of pertur
cross section. When large enough number of modes is
cluded coupled mode theory, in principle, should converge
an exact solution for perturbations of any strength. Pertur
tion theory is numerically more efficient than coupled mo
theory, but it is mostly applicable to the analysis of sm
perturbations. For stronger perturbations, higher order pe
bation corrections must be included converging, in the lim
of higher orders, to an exact solution. Both coupled mo
and perturbation theories’ expansions rely on the knowle
of correct coupling elements.

Conventional approach to evaluation of the coupling e
ments proceeds by expansion of a solution for the fields
perturbed waveguide into the modes of an unperturbed
tem, then computes a correction to the Hamiltonian o
problem due to the perturbation in question and, finally, co
putes the required coupling elements. Unfortunately, this
proach encounters difficulties when applied to the probl
of finding perturbed electromagnetic modes in t
waveguides with shifted high-index-contrast dielect
boundaries. In particular, expansion of the perturbed mo
into an increasing number of the modes of an unpertur
system does not converge to a correct solution when stan
form of the coupling elements@7,8# is used. Mathematica
reasons of such a failure are still not completely underst
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but probably lie either in theincompletenessof the basis of
eigenmodes of an unperturbed waveguide in the domain
the eigenmodes of a perturbed waveguide, or in the fact
the standard mode orthogonality condition~5! does not con-
stitute a strict norm. We would like to point out that standa
coupled mode theory can still be used even in the problem
finding the perturbed modes of a high-index-contrast wa
guide with shifted dielectric interfaces, however, expans
basis cannot be chosen of the modes of an unperturbed
tem. Propagation constants of the perturbed modes are c
puted by using as an expansion basis eigenmodes of s
continuous dielectric profile~empty metallic waveguide, for
example, Ref.@6#!. Unfortunately, the convergence of such
method with respect to the number of basis modes is v
slow ~at most linear!. Perturbation formulation within this
approach is also problematic, thus even for small geome
variations of waveguide profile a full matrix of coupling e
ement has to be computed.

In this paper we introduce a method of evaluating t
coupling elements which is valid for any analytical geome
cal waveguide profile variations and high-index contrast
ing the eigenmodes of an unperturbed waveguide as an
pansion basis. For the reference, correct first or
perturbative expressions in high index-contrast systems
several specialized geometries can be found in Refs.@9–12#.
To derive a correct form of the coupling elements in gene
we first define a convenient way of specifying geometri
variations using a technique of coordinate mapping, and t
construct an expansion basis using spatially stretched m
of an unperturbed waveguide. Stretching is performed
such a way as to match the regions of the field discontinui
in the expansion modes with the positions of the perturb
dielectric interfaces. Thus defined expansion modes are
signed to have continuous fields in the regions of the c
tinuous dielectric of a perturbed index profile. By substitu
ing such expansions into the Maxwell’s equations, we la
find the required expansion coefficients. It becomes m
©2003 The American Physical Society13-1
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convenient to perform further algebraic manipulations in
coordinate system where stretched expansion modes be
again unperturbed modes of an original waveguide. Thus,
final steps of evaluation of the coupling elements invo
transforming and manipulation of Maxwell’s equations in t
perturbation matched curvilinear coordinates.

In further discussions we formulate uniform geometric
waveguide profile variations in terms of an analytical ma
ping of an unperturbed dielectric profile onto a perturb
one. Given a perturbed dielectric profilee(x8,y8) in a Eu-
clidean system of coordinates (x8,y8) ~wherez is a direction
of propagation! we define a mapping„x8(x,y),y8(x,y)… such
that e„x8(x,y),y8(x,y)… corresponds to an unperturbed pr
file in a curvilinear coordinate system associated w
(x,y,z). We then perform a coordinate transformation from
Euclidean system of coordinates (x8,y8,z) into a corre-
sponding curvilinear coordinate system (x,y,z) by rewriting
Maxwell’s equations in such a coordinate system. Fina
because dielectric profile in a coordinate system (x,y,z) is
that of an unperturbed waveguide, we can use the basis s
eigenmodes of an unperturbed Hamiltonian in (x,y,z) coor-
dinates to calculate coupling matrix elements due to g
metrical variation of a waveguide profile.

Our paper is organized as following. We first descri
some typical geometrical perturbations of fiber profile
Next, we discuss properties of general curvilinear coordin
transformations and relate them to a particular case of c
dinate mappings describing geometrical perturbations o
fiber profile. We then formulate Maxwell’s equations in
general curvilinear coordinate system. We apply this form
lation to develop the coupled mode and perturbation theo
using stretched eigenstates of an unperturbed Hamiltonia
an expansion basis. Next, we conduct a detailed study of
convergence of the coupled mode and perturbation theo
for a variety of variations of the geometric profiles in hig
index-contrast waveguides. We conclude with analysis
PMD in hollow core Bragg fibers.

In the following, we focus on the geometrical variatio
in fibers, although geometric variations in gene
waveguides@including photonic crystal~PC! waveguides#
can be readily described by the same theory~see Ref.@3# for
planar waveguides, for example!.

II. TYPES OF GEOMETRICAL VARIATIONS
OF FIBER PROFILES

We start by considering some common geometrical p
turbations of a fiber profile that can arise during manufac
ing or service of fibers. Let (x,y) be the coordinates of a
Euclidean coordinate system. Consider a general coordi
mapping of the form

x5r cos~u!1d f x~r,u!,

y5r sin~u!1d f y~r,u!, ~1!

where f x,y(r,u) are some analytic functions of variablesr
andu, andd controls the strength of a perturbation.
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In unperturbed cylindrically symmetric step index fiber
position of thei th dielectric interface can be described
cylindrical coordinates@mapping Eq.~1! whered50] by a
set of points,r5r i ,uP(0,2p) @see Fig. 1~a!#.

Typical geometrical imperfections in multilayer fibers in
clude the following.

~1! Scaling perturbations involving cylindrically symme
ric variations in the radii of the dielectric layers@see Fig.
1~b!#. If, the radii of the dielectric interfaces are varied fro
their original valuesr i by d f (r i) @d is assumed to be sma
and f (r) is assumed to be an analytical function ofr] then
coordinate mapping ~1! where f x(r,u)5 f (r)cos(u),
f y(r,u)5 f (r)sin(u) will describe such a scaling perturba
tion. Here,uP(0,2p), r5r i define the points on thei th
unperturbed dielectric interface, while the correspond
„x(r,u),y(r,u)… describe the points on the perturbed inte
faces.

~2! Elliptical perturbations describing ellipticities of th
dielectric interfaces induced in the originally cylindrical
symmetric fibers@see Fig. 1~c!#. If, the large and small radi
of the i th elliptical interface are@r i1d f (r i)# and @r i
2d f (r i)# respectively, then coordinate mapping~1! where
f x(r,u)5 f (r)cos(u), f y(r,u)52 f (r)sin(u) will describe
such an elliptical perturbation.

~3! Nonconcentric perturbations, where nonconcentric
of the dielectric interfaces is induced in the originally cyli
drically symmetric fibers@see Fig. 1~d!#. Mapping Eq.~1!
where f x,y(r,u)5(n50

1` @Fcn
x,y(r)cos(nu)1Fsn

x,y(r)sin(nu)#
will describe the most general non-concentric perturbati

FIG. 1. ~a! Dielectric profile of an unperturbed cylindrically
symmetrical fiber. Concentric dielectric interfaces are character
by their radiir i and indexes of refractionni . ~b! Scaling perturba-
tion. Fiber profile remains cylindrically symmetric, while the rad
of the dielectric interfaces becomer i1d i . ~c! Elliptical perturba-
tion. Fiber profile becomes elliptically distorted, large and sm
radii of the dielectric interfaces becomer i6d i . ~d! Example of
nonconcentric perturbation. Dielectric interfaces are shifted al
the horizontal direction byd i .
3-2
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whereFcn
x,y(r) andFsn

x,y(r) are some analytic functions o
r andu.

III. COUPLED MODE THEORY
FOR MAXWELL’S EQUATIONS

In the following, we introduce a Hamiltonian formulatio
of Maxwell’s equations in terms of the transverse field co
ponents to address radiation propagation in generic unif
waveguides~also present in Refs.@1,3#!. Waveguide is con-
sidered to possess translational symmetry in longitudinaẑ
direction.

Assuming a standard time dependence of the electrom
netic fieldsF(x,y,z,t)5F(x,y,z)exp(2ivt) (F denotes elec-
-
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n
n
o
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o
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tric or magnetic field vector! and introducing transverse an
longitudinal components of the fieldsF5Ft1Fz with respect
to the propagation directionz, Maxwell’s equations can be
written in terms of the transverse field components as

2 i
]

]z
B̂uc&5Âuc&, ~2!

where operatorsÂ and B̂ are

B̂5S 0 2 ẑ3

ẑ3 0
D ,
Â5S v

c
e2

c

v
“ t3H ẑF 1

m
ẑ•~“ t3 !G J 0

0
v

c
m2

c

v
“ t3H ẑF1

e
ẑ•~“ t3 !G J D , ~3!
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and Dirac notation is introduceduc&5(Ht

Et ). In this form op-

erators on the left and on the right of Eq.~2! are Hermitian.
In the case of a uniform waveguide profile, operatorÂ is

determined solely by transverse coordinates (x,y), conse-
quently, the fields—solutions of Eq.~2!—will possess an ad
ditional symmetryF(x,y,z,t)5F(x,y)exp(ibz2ivt). Substi-
tution of these fields into Eq.~2! and denoting an operator o
a unperturbed waveguideÂ0 leads to a generalized Hermi
ian eigenvalue problem

bB̂ucb
0&5Â0ucb

0&. ~4!

An orthogonality condition between the modesb andb8
could then be taken in the form~see Ref.@3#!

^cb*
0 uB̂ucb8

0 &5
b8

ub8u
db,b8 , ~5!

where db,b8 stands for the Kronecker delta. Pure realb ’s
correspond to the guided modes, pure imaginaryb ’s corre-
spond to the evanescent modes, and finally, mixed com
b ’s correspond to the complex wave modes.

In the current paper we assume a closed uniform wa
guide with a linear isotropic lossless and nonmagnetic me
so that only the integrable guided and evanescent waves
present in the field expansions. Strictly speaking, this form
lation avoids an analysis of coupling to the radiation co
tinuum or a study of leaky modes in the resona
waveguides. In certain regimes, however, current framew
still allows an analysis of modes in leaky systems~hollow
Bragg fibers and PC waveguides in the example below!. Par-
ticular methods and their justifications are beyond the sc
of this paper and they will only be mentioned in passing. F
ex

e-
ia
are
-
-
t
rk

e
r

the hollow core Bragg fibers and PC waveguides of infin
number of confining layers, for example, radiation leakage
the band gap is zero with modes in the band gap being p
guided and integrable. Consequently, one can use curren
mulation to find new eigenmodes of a waveguide with p
turbed cross section by expanding into a complete se
guided in the band gap, guided in the cladding, and p
evanescent modes. In the case of leaky modes with s
radiation loss~originating from the finite number of confin
ing layers in the Bragg or PC fibers, for example! one can
still use the modes of an ideal lossless system to approxim
the modes of perturbed leaky system in the regions o
waveguide where leaky modes behave like guided modes
the hollow Bragg and PC fibers this region usually exten
from the center of the core to the last confining layer of t
Bragg or PC mirrors. In general, introducing absorbi
boundary conditions together with conducting boundary c
ditions outside an absorber recasts the problem of dea
with nonintegrable leaky modes of an open waveguide o
the problem of dealing with lossy~due to absorption and
anisotropy of an absorbing dielectric layer! but integrable
modes of a closed waveguide. Modification of the curre
method is possible to include absorption loss and anisotr
of corresponding dielectric materials thus, in principle,
lowing the treatment of leaky modes of uniform waveguid
including their radiation losses.

When perturbation of a waveguide profile is introduc
into a system, operatorÂ0 will be modified. We denote cor-
rection to an original operatorÂ0 as DÂ. Then, eigenprob-
lem ~4! is modified and becomes

b̃B̂uc&5@Â01DÂ~z!#uc&. ~6!

One solves Eq.~6! by expanding a solutionuc& into a linear
3-3
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combination of some basis functions. If variation corr
sponding toDÂ(z) is small, then the natural choice of suc
basis functions would be the eigensolutionsucb

0& of an un-

perturbed operatorÂ0,

uc&5(
i

Ci ucb i

0 &, ~7!

whereCi form a vector of expansion coefficientsCW . Substi-
tution of Eq.~7! into Eq. ~6! and further use of the orthogo
nality condition ~5! leads to the following set of couple
linear equations

b̃BCW 5~b0B1DA!CW , ~8!

whereb0 is a diagonal matrix of propagation constants of t
unperturbed modes, normalization matrixB has entriesBi , j

5^cb
i*

0 uB̂ucb j

0 &, and matrix of coupling elementsDA has

entriesDAi , j5^cb
i*

0 uDÂucb j

0 &. Moreover, if perturbation of a

fiber profile is small, eigenproblem~8! allows perturbative
analysis. Mode corresponding to an unperturbed propaga
constantb, after perturbation will be described by a mod
fied propagation constantb̃, which up to a second order i
perturbation strength is given by a standard perturba
theory @13#

b̃5b1
^cb* uDÂucb&

^cb* uB̂ucb&

1 (
b8Þb

^cb* uDÂucb8&^cb8* uDÂucb&

^cb* uB̂ucb&^cb8* uB̂ucb8&

1

b2b8
, ~9!

ucb̃&5ucb&1 (
b8Þb

^cb8* uDÂucb&

^cb8* uB̂ucb8&

ucb8&

b2b8
. ~10!

In general, at a particular frequency, the knowledge ofb
alone is not enough to uniquely characterize an eigenmod
a fiber. Additional labels, such as an angular index of a m
m, indicating the type of angular dependence, are neede
the case of an elliptical perturbation of a transverse fi
profile, there occurs a split in the doubly degenerate eig
modes characterized by the sameb but having the opposite
angular indicesm and2m. For the case of a doubly degen
erate mode, Eq.~9! is not directly applicable. Instead, a sp
in the corresponding propagation constants is obtained f
degenerate perturbation theory@13#. New linearly polarized
nondegenerate eigenmodes, which we denoteucb

1& and
ucb

2&, up to a phase are found to be

ucb
6&5

1

A2
~ ucb,m&6ucb,2m&), ~11!

and the perturbed eigenvalues are
04661
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b65b1
^cb* ,muDÂucb,m&

^cb* ,muB̂ucb,m&
6U^cb* ,muDÂucb,2m&

^cb* ,muB̂ucb,m&
U .

~12!

Expression~12!, in particular, allows to address such a
important quantity as a PMD of a fiber. The intermode d
persion parametert is defined to be the mismatch of th
inverse group velocities of the originally degeneratem5
61 modes decoupled by the perturbation. Expressed
terms of the frequency derivative, the intermode dispers
parameter is

t5U 1

vg
1

2
1

vg
2U5U]~b12b2!

]v U5U]Db6

]v U, ~13!

whereDb65(b12b2). The PMD of a doubly degenerat
mode exhibiting splitting due to a perturbation is defined
be proportional tot @14#. A desirable condition of zero PMD
at a particular frequencyv then implies a zero value of th
frequency derivative of the degeneracy splitDb6, or equiva-
lently Db6 must be stationary at such a frequency.

Standard methods of evaluation of the coupling mat
elements due to the geometrical distortions of the dielec
interfaces@7,8# employ eigenmodes of an unperturbed wav
guide while shifting the dielectric boundaries to extract a
ditional contributions from Maxwell’s equations to the orig
nal Hamiltonian. While intuitive, these methods are know
to fail when dealing with high-index-contrast sharp inte
faces~see detailed discussion in Refs.@1,2,4#!.

In the following we derive the form of the coupling ma
trix DA of Eq. ~8! using transformation of the Maxwell’s
equations into the curvilinear coordinates that match the g
metrical variation in question. This way geometrical var
tions are interpreted as a change in the geometrical metr
space, while the shapes of dielectric interfaces stay int
allowing the use of the eigenmodes of an unperturbed wa
guide in a corresponding curvilinear coordinate system.

IV. CURVILINEAR COORDINATE SYSTEMS

Following Refs. @4,15,16#, we first introduce genera
properties of the curvilinear coordinate transformations.
(x1,x2,x3) be the coordinates in a Euclidean coordina
system. We introduce an analytical mapping into a n
coordinate system with coordinates (q1,q2,q3) as
@x1(q1,q2,q3),x2(q1,q2,q3),x3(q1,q2,q3)#. A new coordi-
nate system can be characterized by its covariant basis
tors aW i defined in the original Euclidean system as

aW i5S ]x1

]qi
,
]x2

]qi
,
]x3

]qi D . ~14!

Note, if all the coordinates exceptqj are kept fixed, thenaW j
is tangential to the set of points described in a Euclide
coordinate system by a curve@x1(qi 5 const,qj ,
qk 5 const),x2(qi5const,qj ,qk 5 const),x3(qi5const,qj ,qk

5const)#. We define a reciprocal~contravariant! vectoraW i as
3-4
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aW i5
1

Ag
aW j3aW k , ~k, j !Þ i , ~15!

where metricgi j is defined as

gi j 5
]xk

]qi

]xk

]qj
, ~16!

and g5det(gi j ). From the definition of a reciprocal vecto
aW i , this vector is perpendicular to the surface of const
qi described in the original Euclidean coordinate s
tem by a set of points @x1(qi5const,qj ,qk),x2(qi

5const,qj ,qk),x3(qi5const,qj ,qk)# where (j ÞkÞ i ). Vec-
tors aW i and their reciprocalaW i satisfy the following orthogo-
nality conditions:

aW i
•aW j5d i , j , aW i•aW j5gi j , aW i

•aW j5gi j , ~17!

wheregi j is an inverse of the metricgi j . In general, a vector
may be represented by its covariant componentsEW 5eiaW

i or
by its contravariant componentsEW 5eiaW i . These component
might have unusual dimensions because the underlying
tors aW i and aW i are not properly normalized in a Euclidea
coordinate system. Components having the usual dimens

are defined by Ei5ei /Agii , Ei5ei /Agii and EW 5eiaW
i

5Ei iW
i , EW 5eiaW i5Ei iW i , whereiW i , iW i are unitary vectors. Nor-

malized covariant and contravariant components are c

nected byEi5Gi j E
j , Ei5Gi j Ej where Gi j 5Agii /gj j gi j ,

Gi j 5Agii /gj j gi j .
In the forthcoming presentation we concentrate on

analysis of the geometrical fiber profile perturbations t
can be described by a general coordinate transformatio
the form

x~r,u!,y~r,u!,z, ~18!

where (x,y,z) are the coordinates in a Euclidean coordin
system. In an unperturbed cylindrically symmetric fiber, t
i th dielectric interface can be characterized by its radiusr i
and a corresponding set of points@x5r cos(u),y5r sin(u)#,
wherer5r i ,uP(0,2p). Given mapping~18!, perturbedi th
dielectric interface can still be characterized by its unp
turbed radiusr i and is represented by a set of poin
@x(r,u),y(r,u)#, r5r i ,uP(0,2p). As demonstrated in
Ref. @4#, vectors forming local covariant and contravaria
coordinate systems associated with coordinates (r,u,z) will
have the following properties on the dielectric interfac
Contravariant basis vectors:iWr is strictly perpendicular to the
perturbed dielectric interface,iWu is almost parallel to the per
turbed dielectric with an angle betweeniWu and tangential to
the dielectric interface being proportional to the perturbat
strengthd. Covariant basis vectors:iWr is almost perpendicu
lar to the perturbed dielectric interface with an angle betw
04661
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iWr and normal to the dielectric interface being proportional
the perturbation strengthd, while iWu is strictly parallel to the
perturbed dielectric interface.

To summarize, geometric perturbations of a fiber pro
can be characterized by a small parameter (d in the examples
above! that defines a curvilinear coordinate mapping of
unperturbed profile expressed in coordinates (r,u,z) onto a
perturbed profile expressed in Euclidean coordina
@x(r,u),y(r,u),z#. This mapping defines a curvilinear an
generally, a nonorthogonal coordinate system of coordina
(r,u,z). The smaller is the profile perturbation the closer
the corresponding curvilinear coordinate system to an or
nal orthogonal system.

V. MAXWELL’S EQUATIONS
IN CURVILINEAR COORDINATES

We now present a formulation of Maxwell’s equations
general curvilinear coordinates. A well known form of Ma
well’s equations in curvilinear coordinates can be found in
variety of references@15–18#. These expressions are com
pactly expressed in terms of the normalized covariant
contravariant components of the fields and in the absenc
free electric currents they are

e~q1,q2,q3!

]
Ei

Agii

]ct
5

1

Ag
ei jk

]
Hk

Agkk

]qj
,

2m~q1,q2,q3!

]
Hi

Agii

]ct
5

1

Ag
ei jk

]
Ek

Agkk

]qj
, ~19!

whereei jk is a Levi-Civita symbol. For further derivations
is most convenient to write Maxwell’s equations in terms
the normalized covariant components only. This will allo
us later in the paper to express the coupling elements on
terms of the integrals over the fields, avoiding the integr
over the field derivatives. In further derivations we will de
with uniform in z coordinate transformations of the form
@x(r,u),y(r,u),z# ~nonuniform inz profiles are considered
in Refs.@4,5#!, thus, some of the elements of the metric a
trivial gzz5gzz51, grz5guz5grz5guz50.

For a uniform fiber, propagation constant is a conserv
number. This translational symmetry can be expressed a

S E~r,u,t !

H~r,u,t ! D 5S E~r,u!

H~r,u!
D

b̃

exp~ i b̃z2 ivt !. ~20!

Assuming nonmagnetic materialsm51 we express Max-
well’s equations~19! in terms of the normalized covarian
coordinates only,
3-5



d

e
on
ly
r,
tio

ria
ica

pro-
en-
in
eir
tric
fy-

how
for-

tian
at-

eri-
lin-
tes

as

is

if-

and
er-
te
as

a-
f

tem

SKOROBOGATIYet al. PHYSICAL REVIEW E 67, 046613 ~2003!
b̃Hu52Aguu
] iH z

]u
1

v

c
eAg~AgrrguuEr1gruEu!,

2b̃Hr5Agrr
] iH z

]r
1

v

c
eAg~gurEr1AgrrguuEu!,

2b̃Eu5Aguu
] iEz

]u
1

v

c
Ag~AgrrguuHr1gruHu!,

b̃Er52Agrr
] iEz

]r
1

v

c
Ag~gurHr1AgrrguuHu!,

~21!

iEz52
c

veAg
S ]

Hu

Aguu

]r
2

]
Hr

Agrr

]u
D ,

iH z5
c

vAg
S ]

Eu

Aguu

]r
2

]
Er

Agrr

]u
D . ~22!

Note that by substitutingz components of the electric an
magnetic fields~22! into ~21! we can form the nonuniform
Hamiltonian formulation of the Maxwell’s equations in th
curvilinear coordinates in terms of the differential equati
relating the covariant components of transverse fields on

For an unperturbed cylindrically symmetric uniform fibe
we denote the eigenfields corresponding to a propaga
constantb and an angular integer indexm as

S E0~r,u,z!

H0~r,u,z!
D

b

m

5S E0~r!

H0~r!
D

b

m

exp~ ibz1 ium!. ~23!

Fields ~23! satisfy equations~21! and ~22! where an unper-
turbed polar coordinate metric is diagonalg0rr51; g0ru

50; g0uu51/r2;g05r2.

VI. COUPLED MODE THEORY FOR MAXWELL’S
EQUATIONS IN CURVILINEAR COORDINATES

In the previous sections we introduced geometrical va
tions of waveguide cross section in terms of the analyt
04661
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mapping of an unperturbed onto a perturbed waveguide
file. Next, we construct an expansion basis using the eig
fields of an unperturbed fiber by spatially stretching them
such a way as to match the regions of discontinuity of th
field components with the position of the perturbed dielec
interfaces. Finally, we find expansion coefficients by satis
ing Maxwell’s equations~21! and~22!. In the following, we
first define an expansion basis and then demonstrate
perturbation theory and a coupled mode theory can be
mulated in such a basis.

A. Expansion basis

We demonstrated previously@1,3,4# that eigenmodes of an
unperturbed waveguide can be described in the Hermi
Hamiltonian formulation in terms of the transverse fields s
isfying an orthogonality condition~5!. In the following we
will concentrate on the case of fibers, while analogous d
vations can be applied to any type of waveguides. For cy
drically symmetrical fibers the natural choice of coordina
are the polar coordinates. Condition of orthogonality~5! for
the eigenfields of an unperturbed fiber can be expanded

^cb* ,m
0 uB̂ucb8,m8

0 &5
b8

ub8u
db,b85E @~Hub*

0m
!* Erb8

0m8

2~Hrb*
0m

!* Eub8
0m81Hub8

0m8~Erb*
0m

!*

2Hrb8
0m8~Eub*

0m
!* #J~r!drdu, ~24!

where in polar coordinates Jacobian of transformation
J(r)5r, and notation for a field componentj P(r,u) ~either
electric or magnetic! is F j b

0m5F j
0(r)exp(imu).

Now, consider a waveguide with a geometry slightly d
ferent from an original one. If (x,y,z) is a Euclidean coor-
dinate system associated with a perturbed waveguide,
(r,u,z) is a coordinate system corresponding to an unp
turbed cylindrically symmetric fiber, we define a coordina
transformation relating such two coordinate systems
@x(r,u),y(r,u),z#, and a conjugate coordinate transform
tion as@r(x,y),u(x,y),z#. Using solutions for the fields o
an unperturbed fiber expressed in the coordinates (r,u,z) we
form an expansion basis in a Euclidean coordinate sys
(x,y,z) as
uCb,m&5SA grr

g0rr
Er

0~r~x,y!! iWr1A guu

g0uu
Eu

0
„r~x,y!…iWu

A grr

g0rr
Hr

0
„r~x,y!…iWr1A guu

g0uu
Hu

0
„r~x,y!…iWu

D
b

m

exp@ imu~x,y!#. ~25!
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There are several important properties that basis ve
fields ~25! possess. First, if coordinate transformation
orthogonal (iWr5 iWr , iWu5 iWu) then one can show that an
two basis fields of~25! are orthogonal in a sense of th
orthogonality condition ~24!, ^Cb* ,muB̂uCb8,m8&
5(b8/ub8u)db,b8dm,m8 . Moreover, in the case of nonor
thogonal transformations, basis fields~25! will be almost or-
thogonal with an amount of nonorthogonality proportional
the strength of perturbation.

Second, basis fields~25! are continuous in the regions o
continuous dielectric of a perturbed fiber profile. In oth
words, regions of discontinuity in the field components
the basis fields~25!, by construction, coincide with the pos
tions of the perturbed dielectric interfaces.

Finally, due to the properties of the generalized coordin
transformations discussed in the preceding section,iWr will be
strictly normal to the perturbed dielectric interfaces, whileiWu

will be either strictly tangential~orthogonal coordinate trans
formation! or almost tangential to the perturbed dielect
interfaces, deviating from strict tangentiality by an amou
proportional to the strength of perturbation. As the unp
turbed components of the fieldsEr

0 ,Hr
0 and Eu

0 ,Hu
0 satisfy

the correct boundary conditions on the unperturbed dielec
interfaces the field components~25! of ~25! basis functions
will either exactly satisfy the proper boundary conditions
the perturbed interfaces~orthogonal coordinate transforma
tion! or will satisfy them approximately deviating only by a
amount proportional to the strength of perturbation.

B. Coupled mode theory

In the preceding section we derived the forms~21! and
~22! of Maxwell’s equations in the curvilinear coordinate
(r,u,z). While seemingly complicated, these equations
le
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volve an unperturbed, cylindrically symmetric uniform inz
dielectric profilee(r,u). We look for a solution of Max-
well’s equations~21!, ~22! in terms of the field expansion

coefficientsCm8,b̃
b8 of the basis fields~25! which in (r,u,z)

coordinate system are essentially the eigenfields of an un
turbed fiber. Thus, in covariant coordinates

S Er

Eu

Hr

Hu

D
b̃

5 (
b8,m8

Cm8,b̃
b8 1

A grr

g0rr
Er

0~r!

A guu

g0uu
Eu

0~r!

A grr

g0rr
Hr

0~r!

A guu

g0uu
Hu

0~r!

2
b8

m8

exp~ im8u!.

~26!

We then substitute expansion~26! into Eq.~21!, multiply the
modified equations~21! on the left by the proper componen
of the unperturbed fields and integrate over the fiber cr
section to exploit an orthogonality condition satisfied by t
unperturbed solutions~24!. Manipulating the resultant equa
tions ~see Ref.@4# for details! we arrive at the following set
of equations:

b̃BCW b̃5MCW b̃ , ~27!

whereBb* ,b85(b8/ub8u)db,b8 is a normalization matrix~5!,
M is a matrix of coupling elements given by
Mb* ,m;b8,m85^cb* muM̂ ucb8,m8&

5
v

c E exp@ i ~m82m!u#S Er
0~r!

Eu
0~r!

Ez
0~r!

Hr
0~r!

Hu
0~r!

Hz
0~r!

D
b*

m†S edrr edru 0 0 0 0

edur eduu 0 0 0 0

0 0 edzz 0 0 0

0 0 0 drr dru 0

0 0 0 dur duu 0

0 0 0 0 0 dzz

D S Er
0~r!

Eu
0~r!

Ez
0~r!

Hr
0~r!

Hu
0~r!

Hz
0~r!

D
b8

m8

J~r!drdu,

~28!
integration is performed over an unperturbed fiber profi
and nonzero elements of 636 matrix M̂ are

drr5grrAgg0uu

g0rr
, ~29!
, dru5dur5gruAg,

duu5guuAgg0rr

g0uu
,

3-7
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dzz52g0Ag0rrg0uu

g
.

Equations~26! present an eigenproblem with respect to t
values of the modified propagation constantsb̃ and corre-
sponding vectors of expansion coefficientsCm,b̃

b and can be
further solved numerically.

Note that the matrix of coupling elementsM is Hermitian
and, thus^cb* ,muM̂ ucb8,m8&5^cb8,m8uM̂ ucb* ,m&* . In Eq.
~28! we can further perform an integration of matrixM̂ over
u, *M̂ exp@i(m82m)u#du, as such an integration is decouple
from the integration over the fields which are the functio
of r only.

To summarize, given a geometric perturbation of a u
form fiber profile, we characterize such a perturbation
terms of a coordinate transformation@x(r,u),y(r,u),z#
where an original cylindrically symmetric fiber profile in co
ordinates (r,u,z) is mapped onto a perturbed fiber profile
Euclidean coordinates (x,y,z). Maxwell’s equations trans
formed into a perturbation defined curvilinear coordina
system can be recast into a generalized Hermitian eigenv
problem~27!. Solving such an eigenvalue problem govern
by the matrix of coupling elements~28! and ~29! one can
find the modes of a perturbed uniform waveguide to a
degree of accuracy.

Moreover, Eq.~27! allows a perturbative interpretation
As a metric of a slightly perturbed coordinate system is o
slightly different from the metric of an unperturbed coord
nate system, that will naturally introduce a small parame
for small geometrical perturbations of a fiber profile. Exac
the same perturbative expansion for the values of the m
propagation constants as in Eqs.~9! and ~12! holds in our
case, where instead of operatorDA one would use an opera
tor M2b0B, whereb0 is a diagonal matrix of propagatio
constants of unperturbed modes.

VII. STUDY OF CONVERGENCE OF THE PERTURBATION
EXPANSIONS AND A COUPLED MODE THEORY

We test our theory on a set of geometrical perturbation
the multilayered dielectric waveguides. Modes and propa
tion constants of unperturbed cylindrically symmetric diele
tric waveguides are calculated by transfer matrix appro
detailed in Refs.@1,19#.

As a test system we consider a two core dielectric wa
guide@see Fig. 1~a!# with radii Rc151a, Rc252a, and cor-
responding indices of refractionnc153, nc252. Dielectric
cladding is assumed to benclad51. Waveguide is sur-
rounded by a metal jacket~metal is assumed to be ideal! at
Rm54a. Frequency is fixed and equalsv50.2(2pc/a),
propagation constants are measured in units 2p/a, wherea
defines the scale and can be chosen at will. Metallic bou
ary conditions of a waveguide’s outer jacket eliminates
radiation continuum allowing a discrete spectrum of guid
~propagation constant is pure real! and evanescent mode
~propagation constant is complex!. There are altogether eigh
guided modes~forward and backward propagating! of angu-
lar index m50, 16 guided modes of angular indexm
04661
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561, 12 guided modes of angular indexm562, 8 guides
modes of angular indexm563, and there are no othe
guided modes for the higher angular indices in this fib
~although there are infinitely many evanescent modes for
angular indexm).

First, we analyze convergence of the coupled mode the
for nonuniform scaling perturbations described by coordin
mapping~1!-~1! where waveguide’s second dielectric inte
face and outer metal jacket are kept fixed while waveguid
first core radius is changed fromRc1 to Rc1(11d). In prin-
ciple, there are infinitely many mappings that keep the s
ond dielectric interface and an outer metallic jacket int
while changing the radius of the first core. The choice o
particular mapping can influence convergence of the coup
mode theory, however, exactly the same result should
achieved for the equivalent mappings~mappings are equiva
lent if the positions of the resultant dielectric interfaces a
the same!. Thus, we choose mapping~1!-~1! in the form

f ~r!5r
~r2Rc2!~r2Rm!

~Rc12Rc2!~Rc12Rm!
.

Such a mapping leaves the second dielectric interface
metallic jacket unchanged, while changing the radius of
first core from Rc1 to Rc1(11d). Coupling elements are
calculated exactly from~28! with selection ruleDm50 and
M̄ matrix given by drr52d$@r f 8(r)2 f (r)#/r@1
1d f 8(r)#%, dru5dur50, duu5d$@r f 8(r)2 f (r)#/r
1d f (r)%, dzz5$12r/@r1d f (r)#@11d f 8(r)#%. For d
50.5%,1%,2% perturbations we plot errors in the propa
tion constant of perturbedm50 fundamental mode calcu
lated by the coupled mode theory, Eqs.~27!–~29!, and sec-
ond order perturbation theory, Eqs.~9!, ~28!, and ~29! as a
function of the number of expansion modesN ~see Fig. 2!.
Note, that only the modes with the same angular indexm are

FIG. 2. Error in the values of the propagation constant of
fundamentalm50 mode of a perturbed dual core metal jacket
fiber @see Fig. 1~b!# as a function of the number of expansio
modes. Dotted curves correspond to the coupled mode th
~CMT! while solid curves correspond to the second order pertur
tion theory. Strengths of the perturbations ared50.5%,1%,2%.
3-8
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DIELECTRIC PROFILE VARIATIONS IN HIGH- . . . PHYSICAL REVIEW E 67, 046613 ~2003!
coupled by scaling perturbation. Inclusion of only a sing
unperturbed fundamental modeN51 into coupled mode
theory corresponds to the first order perturbation theory~9!.
Note from Fig. 2 that the resulting error scales asd2, signi-
fying that the first order perturbation theory is correct, red
ing the error to the second order. Inclusion of the rest of
modes~guided and evanescent! leads to a very fast;N22.5

convergence of the coupled mode theory~dotted curves!. Er-
rors in the second order perturbation theory~solid curves!
saturate with only 20–30 expansion modes and the resu
errors scale asd3, signifying that the second order perturb
tion theory is correct, reducing the error to the third orde

Next, we analyze nonuniform elliptical perturbation of
composite core fiber@see Fig. 1~b!#. We choose mapping
~1!-~2! in the form

f ~r!5r
~r2Rc2!~r2Rm!

~Rc12Rc2!~Rc12Rm!
.

Such a mapping leaves the second dielectric interface
metallic jacket unchanged, while letting the radius of the fi
core vary in the rangeRc1(16d). Coupling elements are
calculated to the first order by Eqs.~28! and 29! with selec-
tion rule uDmu52 and M̄ matrix given by drr

52d$@r f 8(r)1 f (r)#/2r%,

dru5dur5sgn~Dm!id
@ f ~r!1r f 8~r!#

2r
,

duu5d$@ f (r)1r f 8(r)#/2r%, dzz5d$@r f 8(r)2 f (r)#/2r%.
For d50.5% ellipticity we plot ~Fig. 3! splitting in the
propagation constantsubm512bm521u of originally degen-
eratem561 modes calculated by first order perturbati
theory ~12! using coupling elements~28!. We compare our

FIG. 3. First order ind split ubm512bm521u in the propagation
constants of the first twom51 modes~fundamental, and the closes
to the fundamental modes! of a composite core fiber under a no
uniform elliptical perturbation~see Fig. 1c!!. Solid curves corre-
spond to the frequency domain MPB code, while dotted cur
correspond to the first order perturbation theory. Strength of
perturbation isd50.5% for both modes.
04661
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theoretical predictions with the results of a frequency dom
code called MIT photonic bands~MPB @20#! developed at
MIT. Over a large range of frequencies we have an excel
agrement between the first-order perturbation theory res
and the results of the frequency domain MPB code.

Finally, we present analysis of nonconcentric perturbat
of a composite core fiber where one of the interfaces
shifted with respect to the center of cylindrical symme
@see Fig. 1~d!#. We choose mapping~1!–~3! in the form

f x~r,u!5
~r2Rc2!~r2Rm!

~Rc12Rc2!~Rc12Rm!
,

f y(r,u)50. Such a mapping leaves the second dielec
interface and metallic jacket unchanged, while shifting t
first dielectric interface horizontally byd. We evaluate
change in the propagation constant of the fundamentam
50 mode. From expression~9! and the form of the matrix
elements~28! one can derive thatMb* ,0;b,050, and, hence,
the change in the propagation constant ofm50 mode scales
as second power of perturbation strength. To apply exp
sion ~9! to the second order we have to calculate coupl
elements forDm50 to the second order, and coupling el
ments foruDmu51 to the first order. MatrixM̄ for Dm50 to
the second order is given bydrr5(d2/2) f 8(r)2, dru5dur

50, duu5(d2/2) f 8(r)2, dzz52(d2/2) f 8(r)2. Matrix M̄ for
uDmu51 to the first order is given bydrr52(d/2) f 8(r),
dru5dur5sgn(Dm) i (d/2) f 8(r), duu5(d/2) f 8(r), dzz
5(d/2) f 8(r). For d50.1a perturbation we plot~Fig. 4!
change in the propagation constantDb of the fundamental
m50 mode calculated by second order perturbation the
~9! using coupling elements~28!. We compare our theoretica
predictions with the results of a frequency domain co

s
e

FIG. 4. Second order ind shift Db in the propagation constant
of the m50 mode of a composite core fiber under a nonunifo
non-circular perturbation@see Fig. 1~d!#. Solid curves correspond to
the frequency domain MPB code, while dotted curves correspon
the second order perturbation theory. Strength of the perturbatio
d50.1a.
3-9
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called MPB @20#, developed at MIT. Over a large range
frequencies we have a good agrement between the se
order perturbation theory results and the results of the
quency domain MPB code. Moreover, the rate of conv
gence of the second order perturbation theory with the n
ber of modes in the expansion basis is almost cubic.

VIII. PMD OF HOLLOW CORE BRAGG FIBER

As a nontrivial application of our method we calcula
deterministic PMD due to elliptic perturbation in the hig
index-contrast hollow Bragg fiber. Bragg fiber under study
the same as in Ref.@1#. It has a hollow core~index of refrac-
tion unity! of 30a surrounded by omnidirectional mirror tha
comprises 17 layers, starting with high-index layer, with
dices 4.6/1.6 and thicknesses 0.22a/0.78a, respectively. Mir-
ror is surrounded by cladding of index 1.6. The frequency
the fundamentalm51 mode is chosen at the point of i
lowest radiation loss~24 dB/km! in the first omnidirectional
band gap and is equal tov50.24(2pc/a). If we make this
frequency to correspond to the standardl51.55mm of tele-
communications, we havea5lv50.37mm. Note that in
the current example the ratio of the structure size~outside
core radius! to the size of the smallest feature~mirror layer
thickness! is so large that evaluation of PMD using gene
frequency domain mode solvers or time domain codes
comes prohibitively computationally intensive. We evalua
PMD in terms of the intermode dispersion parametert given
by expression~13! using first order perturbation theory th
we developed in this paper. We assume the same amou
ellipticity d for all the layers in the mirror and metalli
boundary conditions outside of the last layer of the mirr
Coordinate mapping to describe such an ellipticity will
~1!-~2! with f (r)5r. Coupling elements are calculated
the first order from Eq.~28! with selection ruleuDmu52 and
M̄ matrix given bydrr52d, dru5dur5sgn(Dm) id, duu
5d, dzz50. For d51% ellipticity we plot ~Fig. 5! inter-
mode dispersion parametert as defined by Eq.~13! for the
hollow core Bragg fiber. Note that for the regular teleco
Or
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munication silica fiber with ellipticity correlation length of
m ~spun fiber! the intermode dispersion parameter is a
proximately 0.1 ps/m.

IX. CONCLUSION

In this work, we presented a different form of the coupl
mode and perturbation theories to treat general geome
perturbations of a waveguide profile with an arbitrary diele
tric index contrast. We demonstrated that for perturbation
high-index-contrast profiles our theories exhibit higher th
linear convergence to the exact result with the number
expansion modes, and when perturbation is small pertu
tion theory approach is demonstrated to give correct res
not only to the first order but also to the higher orders
accuracy. To our knowledge, this is the first time perturbat
theory approach is developed to deal with arbitrary pro
variations in high-index-contrast waveguides to higher
ders of accuracy.

FIG. 5. Intermode dispersion parametert for the fundamental
HE11 mode of a hollow Bragg fiber under the uniformd51%
elliptical perturbation.
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