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Perturbation theory formulation of Maxwell's equations gives a theoretically elegant and computationally
efficient way of describing small imperfections and weak interactions in electromagnetic systems. It is gener-
ally appreciated that due to the discontinuous field boundary conditions in the systems employing high dielec-
tric contrast profiles standard perturbation formulations fails when applied to the problem of shifted material
boundaries. In this paper we developed coupled mode and perturbation theory formulations for treating generic
perturbations of a waveguide cross section based on Hamiltonian formulation of Maxwell equations in curvi-
linear coordinates. We show that our formulation is accurate beyond the first order and rapidly converges to an
exact result when used in a coupled mode theory framework even for the high-index-contrast discontinuous
dielectric profiles. Among others, our formulation allows for an efficient numerical evaluation of such quan-
tities as deterministic PMD and change in the GV and GVD of a mode due to generic profile distortion in a
waveguide of arbitrary cross section. To our knowledge, this is the first time perturbation and coupled mode
theories are developed to deal with arbitrary profile variations in high-index-contrast waveguides.
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[. INTRODUCTION but probably lie either in thincompletenessf the basis of
eigenmodes of an unperturbed waveguide in the domain of
Standard perturbation and coupled mode theory formulathe eigenmodes of a perturbed waveguide, or in the fact that
tions are known to fail or exhibit a very slow convergencethe standard mode orthogonality conditi@ does not con-
[1-6] when applied to the analysis of geometrical variationsstitute a strict norm. We would like to point out that standard
in the structure of high-index-contrast fibers. coupled mode theory can still be used even in the problem of
In a coupled mode theory framework, eigenvalues of dinding the perturbed modes of a high-index-contrast wave-
matrix of coupling elements approximate the values of theduide with shifted dielectric interfaces, however, expansion

propagation constants of a uniform waveguide of perturbed@Sis cannot be chosen of the modes of an unperturbed sys-

cross section. When large enough number of modes is ifem- Propag_ation constants of.the pefturped modes are com-
cluded coupled mode theory, in principle, should converge t(PUted by using as an expansion basis eigenmodes of some

an exact solution for perturbations of any strength. Perturba(-:ormm“IOUS dielectric profiléempty metallic waveguide, for

tion theory is numerically more efficient than coupled modeexample, Ref|6]). Unfortunately, the convergence of such a

o X : method with respect to the number of basis modes is ver
theory, but it is mostly applicable to the analysis of small P y

bati F bati high d slow (at most linear. Perturbation formulation within this
perturbations. For stronger perturbations, higher order pertuty, .o, o, is also problematic, thus even for small geometric
bation corrections must be included converging,

X s in the limityaiations of waveguide profile a full matrix of coupling el-
of higher orders, to an exact solution. Both coupled modgment has to be computed.

and perturbation theories’ expansions rely on the knowledge |n this paper we introduce a method of evaluating the
of correct coupling elements. coupling elements which is valid for any analytical geometri-
Conventional approach to evaluation of the coupling elecal waveguide profile variations and high-index contrast us-
ments proceeds by expansion of a solution for the fields in &g the eigenmodes of an unperturbed waveguide as an ex-
perturbed waveguide into the modes of an unperturbed sypansion basis. For the reference, correct first order
tem, then computes a correction to the Hamiltonian of gperturbative expressions in high index-contrast systems for
problem due to the perturbation in question and, finally, comseveral specialized geometries can be found in Refs12].
putes the required coupling elements. Unfortunately, this apfo derive a correct form of the coupling elements in general
proach encounters difficulties when applied to the problenwe first define a convenient way of specifying geometrical
of finding perturbed electromagnetic modes in thevariations using a technique of coordinate mapping, and then
waveguides with shifted high-index-contrast dielectricconstruct an expansion basis using spatially stretched modes
boundaries. In particular, expansion of the perturbed modesf an unperturbed waveguide. Stretching is performed in
into an increasing number of the modes of an unperturbeduch a way as to match the regions of the field discontinuities
system does not converge to a correct solution when standand the expansion modes with the positions of the perturbed
form of the coupling elementf7,8] is used. Mathematical dielectric interfaces. Thus defined expansion modes are de-
reasons of such a failure are still not completely understoodigned to have continuous fields in the regions of the con-
tinuous dielectric of a perturbed index profile. By substitut-
ing such expansions into the Maxwell’s equations, we later
*Email address: maksim@omni-guide.com find the required expansion coefficients. It becomes more
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convenient to perform further algebraic manipulations in a
coordinate system where stretched expansion modes becon
again unperturbed modes of an original waveguide. Thus, the
final steps of evaluation of the coupling elements involve
transforming and manipulation of Maxwell's equations in the
perturbation matched curvilinear coordinates.

In further discussions we formulate uniform geometrical
waveguide profile variations in terms of an analytical map-
ping of an unperturbed dielectric profile onto a perturbed
one. Given a perturbed dielectric profig€x’,y’) in a Eu-
clidean system of coordinates’(y’) (wherezis a direction
of propagatiopwe define a mapping’ (x,y),y’ (x,y)) such
that e(x’(x,y),y’ (x,y)) corresponds to an unperturbed pro-
file in a curvilinear coordinate system associated with
(x,y,z). We then perform a coordinate transformation from a
Euclidean system of coordinatex’(y’,z) into a corre-
sponding curvilinear coordinate systemy,z) by rewriting
Maxwell's equations in such a coordinate system. Finally,
because dielectric profile in a coordinate systeqy(z) is
that of an unperturbed waveguide, we can use the basis set c.
eigenmodes of an unperturbed Hamiltonian xpy(z) coor-

dinates t lculat i trix el ts due t FIG. 1. (a) Dielectric profile of an unperturbed cylindrically
inates 1o calculate coupling matrix elements due to geoéymmetrical fiber. Concentric dielectric interfaces are characterized
metrical variation of a waveguide profile.

. . . . by their radiip; and indexes of refraction; . (b) Scaling perturba-
Our paper is organized as following. We first descrlbetion. Fiber profile remains cylindrically symmetric, while the radii

some typical geometrical perturbations of fiber profiles.ot the dielectric interfaces become-+ 8, . (c) Elliptical perturba-
Next, we discuss properties of general curvilinear coordinat@on, Fiber profile becomes elliptically distorted, large and small
transformations and relate them to a particular case of COOkndii of the dielectric interfaces becon;:ei 5i i (d) Examp|e of
dinate mappings describing geometrical perturbations of @aonconcentric perturbation. Dielectric interfaces are shifted along
fiber profile. We then formulate Maxwell's equations in athe horizontal direction by, .
general curvilinear coordinate system. We apply this formu-
lation to develop the coupled mode and perturbation theories In unperturbed cylindrically symmetric step index fibers,
using stretched eigenstates of an unperturbed Hamiltonian g®sition of theith dielectric interface can be described in
an expansion basis. Next, we conduct a detailed study of theylindrical coordinate$mapping Eq.(1) where §=0] by a
convergence of the coupled mode and perturbation theorieset of points,p=p;,0€ (0,27) [see Fig. 1a)].
for a variety of variations of the geometric profiles in high-  Typical geometrical imperfections in multilayer fibers in-
index-contrast waveguides. We conclude with analysis otlude the following.
PMD in hollow core Bragg fibers. (1) Scaling perturbations involving cylindrically symmet-
In the following, we focus on the geometrical variations ric variations in the radii of the dielectric layefsee Fig.
in fibers, although geometric variations in generic1(b)]. If, the radii of the dielectric interfaces are varied from
waveguides[including photonic crystalPC) waveguide$ their original valuesp; by 6f(p;) [ 8 is assumed to be small
can be readily described by the same thespe Ref[3] for  andf(p) is assumed to be an analytical functiongdfthen
planar waveguides, for example coordinate mapping (1) where f,(p,0)="f(p)cos@),
fy(p,0)="f(p)sin(d) will describe such a scaling perturba-
tion. Here, 6 (0,27), p=p; define the points on théth
unperturbed dielectric interface, while the corresponding
x(p,0),y(p,0)) describe the points on the perturbed inter-
We start by considering some common geometrical perfaces.
turbations of a fiber profile that can arise during manufactur- (2) Elliptical perturbations describing ellipticities of the
ing or service of fibers. Letx,y) be the coordinates of a dielectric interfaces induced in the originally cylindrically
Euclidean coordinate system. Consider a general coordinagymmetric fiberdsee Fig. 1c)]. If, the large and small radii

Il. TYPES OF GEOMETRICAL VARIATIONS
OF FIBER PROFILES

mapping of the form of the ith elliptical interface are[p;+ 8f(p;)] and [p;
— 6f(p;)] respectively, then coordinate mappif) where
x=p cog 0)+ ofy(p,0), fx(p,6)="f(p)cos@), fy(p,0)=—"F(p)sin(d) will describe

such an elliptical perturbation.
) (3) Nonconcentric perturbations, where nonconcentricity
y=psin(0)+ fy(p,0), (D) of the dielectric interfaces is induced in the originally cylin-
drically symmetric fiberdsee Fig. 1d)]. Mapping Eq.(1)
wheref, ,(p,6) are some analytic functions of variables where f, ,(p,8) ==, [Fcy¥(p)cosfd)+Fs(p)sin(n6)]
and 6, and é controls the strength of a perturbation. will describe the most general non-concentric perturbation,

046613-2



DIELECTRIC PROFILE VARIATIONS IN HIGH . .. PHYSICAL REVIEW E 67, 046613 (2003

whereFc)Y(p) andFs,Y(p) are some analytic functions of tric or magnetic field vectgrand introducing transverse and
p andé. longitudinal components of the fields= F,+ F, with respect
to the propagation direction Maxwell's equations can be
Il. COUPLED MODE THEORY written in terms of the transverse field components as

FOR MAXWELL'S EQUATIONS

In the following, we introduce a Hamiltonian formulation —j ié| ¢>=A| W), 2
of Maxwell’s equations in terms of the transverse field com- oz
ponents to address radiation propagation in generic uniform
waveguidegalso present in Ref$1,3]). Waveguide is con- where operatoré andB are

sidered to possess translational symmetry in longitudmal

direction. 0 —7x
Assuming a standard time dependence of the electromag- [:,:( R ) ,
netic fieldsF(x,y,z,t) =F(x,y,z)exp(—iwt) (F denotes elec- zX 0
|
w ~
—e— —VX{2Z —z-(VX) 0
A= ; o oo s 1 o : )
ok VX gz (VX))

and Dirac notation is introducdd/):(ﬁ‘). In this form op-  the hollow core Bragg fibers and PC waveguides of infinite

! number of confining layers, for example, radiation leakage in
the band gap is zero with modes in the band gap being pure
, : guided and integrable. Consequently, one can use current for-
determined solely by transverse coordinatesy), conse-  pyjation to find new eigenmodes of a waveguide with per-
quently, the fields—solutions of ER)—will possess an ad- ;rhed cross section by expanding into a complete set of
ditional symmetryF(x,y,z,t) =F(x,y)exp(Bz—iwt). Substi-  gyided in the band gap, guided in the cladding, and pure
tution of these fields intoAEc(Z) and denoting an operator of oy anescent modes. In the case of leaky modes with small
a unperturbed waveguidg, leads to a generalized Hermit- radiation losg(originating from the finite number of confin-

erators on the left and on the right of H®) are Hermitian.
In the case of a uniform waveguide profile, opera@ois

ian eigenvalue problem ing layers in the Bragg or PC fibers, for examptme can
foe Ao still use the modes of an ideal lossless system to approximate
BBl ) =Aolthg). (4)  the modes of perturbed leaky system in the regions of a

waveguide where leaky modes behave like guided modes. In
the hollow Bragg and PC fibers this region usually extends
from the center of the core to the last confining layer of the
, Bragg or PC mirrors. In general, introducing absorbing
<l/fo |I§|¢° )= :3_5 / (5) boundary conditions together with conducting boundary con-
B B! BB ditions outside an absorber recasts the problem of dealing
with nonintegrable leaky modes of an open waveguide onto

An orthogonality condition between the modésand g8’
could then be taken in the forfsee Ref[3])

1Bl

where 65 5 stands for the Kronecker delta. Pure rgg$  the problem of dealing with lossydue to absorption and
correspond to the guided modes, pure imagin@sy/corre-  anisotropy of an absorbing dielectric laydsut integrable
spond to the evanescent modes, and finally, mixed complemodes of a closed waveguide. Modification of the current
B’s correspond to the complex wave modes. method is possible to include absorption loss and anisotropy

In the current paper we assume a closed uniform waveef corresponding dielectric materials thus, in principle, al-
guide with a linear isotropic lossless and nonmagnetic meditbowing the treatment of leaky modes of uniform waveguides
so that only the integrable guided and evanescent waves angcluding their radiation losses.
present in the field expansions. Strictly speaking, this formu- When perturbation of a waveguide profile is introduced

lation avoids an analysis of coupling to the radiation con-into a system, operatdk, will be modified. We denote cor-

tinuum _é)r al stu?y_ of !eaky hmodes n thet fresonant ection to an original operato?ko asAA. Then, eigenprob-
waveguides. In certain regimes, however, current frameworl, ., 4) is modified and becomes

still allows an analysis of modes in leaky systethsllow
Bragg fibers and PC waveguides in the example bel&ar- BBl =[As+AA(2)]|¢). (6)
ticular methods and their justifications are beyond the scope

of this paper and they will only be mentioned in passing. ForOne solves Eq(6) by expanding a solutiohy) into a linear
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combination ef some basis functions. If variation corre- ) (g m|AA| Uom) | (g m|AA|¢,3 m)‘
sponding toAA(z) is small, then the natural choice of such B =B+ = = = .
basis functions would be the eigensolutidﬂ%) of an un- (#ge ml Bl m) {4+ ml Bl m) ‘
perturbed operatoh,, (12)

Expression(12), in particular, allows to address such an
ly)y=">, C|l l/;%_), (7)  important quantity as a PMD of a fiber. The intermode dis-
i ' persion parametet is defined to be the mismatch of the
R inverse group velocities of the originally degenerate-
whereC; form a vector of expansion coefficien®s Substi- *=1 modes decoupled by the perturbation. Expressed in
tution of Eq.(7) into Eq.(6) and further use of the orthogo- terms of the frequency derivative, the intermode dispersion
nality condition (5) leads to the following set of coupled parameter is
linear equations

(13

(BT =B)| _|Ap7|
BBC=(B,B+AA)C, (8) do | | dw |
whereg, is a diagonal matrix of propagation constants of thewhereA3~ =(8"—"). The PMD of a doubly degenerate
unperturbed modes, normalization matBxhas entriesB; J mode exhibiting splitting due to a perturbation is defined to

_W |B|¢B> and matrix of coupling element8A has be proportional tar [14]. A desirable condition of zero PMD
By at a particular frequency then implies a zero value of the

entriesAA, Wﬁ |AA| ¢ﬁ> Moreover, if perturbation of a frequency derivative of the degeneracy splg™, or equiva-
lently AB* must be stationary at such a frequency.
Standard methods of evaluation of the coupling matrix
ements due to the geometrical distortions of the dielectric
interfaceq7,8] employ eigenmodes of an unperturbed wave-
uide while shifting the dielectric boundaries to extract ad-
itional contributions from Maxwell's equations to the origi-

fiber profile is small eigenproblert8) allows perturbative
analysis. Mode corresponding to an unperturbed propagamonI
constantg, after perturbatlon will be described by a modi-

fied propagation constagt, which up to a second order in
perturbation strength is given by a standard perturbatio

theory[13] nal Hamiltonian. While intuitive, these methods are known
to fail when dealing with high-index-contrast sharp inter-
(e | AA| ) faces(see detailed discussion in Ref4,2,4).
B=p+ <¢B*|B|¢B> In the following we derive the form of the coupling ma-
trix AA of Eq. (8) using transformation of the Maxwell’s
(g |AA| ‘/’B’><¢ﬁ’*|AA| g 1 equations into the curvilinear coordinates that match the geo-
= = -, (9 metrical variation in question. This way geometrical varia-
grp (Upr|BlUg)(Ypr|Blig) BB tions are interpreted as a change in the geometrical metric of
space, while the shapes of dielectric interfaces stay intact,
x| AA allowing the use of the eigenmodes of an unperturbed wave-
lyg)y=lwg)+ 2 G| B2 14 (100 guide in a corresponding curvilinear coordinate system.

B'#B <l//B/*|B|i/fﬁ> B-B'
In general, at a particular frequency, the knowledgegBof V- CURVILINEAR COORDINATE SYSTEMS

alone is not enough to uniquely characterize an eigenmode of Following Refs.[4,15,16, we first introduce general

a fiber. Additional labels, such as an angular index of a modgroperties of the curvilinear coordinate transformations. Let
m, indicating the type of angular dependence, are needed. Ifx*,x?,x3) be the coordinates in a Euclidean coordinate
the case of an elliptical perturbation of a transverse fibesystem. We introduce an analytical mapping into a new
profile, there occurs a split in the doubly degenerate eigencoordinate system with coordinates q*(q%,q%) as
modes characterized by the sagéut having the opposite [x*(q*,92,0%),x%(9%9%9%),x3(q,9%,9%)]. A new coordi-
angular indicesn and —m. For the case of a doubly degen- nate system can be characterized by its covariant basis vec-

erate mode, Eq9) is not directly applicable. Instead, a split tors a; defined in the original Euclidean system as
in the corresponding propagation constants is obtained from

degenerate perturbation thedry3]. New linearly polarized [ oxt ax? ox3
nondegenerate eigenmodes, which we dedmg) and i
|5), up to a phase are found to be

(14
oq " aq'’ aq

1 Note, if all the coordinates except are kept fixed, theéi

& + 11 is tangential to the set of points described in a Euclidean
Vs \/_(WB m =[5, -m) D Coordinate system by a curve[x}(q = constqJ
g“ = const) x?(q'=constg’,q* = const) x3(q'=constg’,g*

and the perturbed eigenvalues are =const)]. We define a remproc&tontravanar)tvectora as
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Tp and normal to the dielectric interface being proportional to

1
\/_a the perturbqtion s;re'ngtbl while fa is strictly parallel to the
perturbed dielectric interface.
where metricg;; is defined as To summarize, geometric perturbations of a fiber profile
can be characterized by a small parametein(the examples

above that defines a curvilinear coordinate mapping of an

axk gxk unperturbed profile expressed in coordinatesd(z) onto a

o (16) perturbed profile expressed in Euclidean coordinates

[X(p,0),y(p,0),z]. This mapping defines a curvilinear and,

_ I . generally, a nonorthogonal coordinate system of coordinates

andg=det(g;;). From the definition of a reciprocal vector (p,0,2). The smaller is the profile perturbation the closer is

a’, this vector is perpendicular to the surface of constanfhe corresponding curvilinear coordinate system to an origi-
q' described in the original Euclidean coordinate sys-pq orthogonal system.

tem by a set of points[x}(q'=constg!,q¥),x*(q'
=constg’,q¥),x3(q' =constg!,q")] where (#k#i). Vec-
tors 5i and their reciprocadii satisfy the following orthogo-
nality conditions:

a=—=ajxa, (kj#i, (15)

gij:&qi a_q‘

V. MAXWELL'S EQUATIONS
IN CURVILINEAR COORDINATES

We now present a formulation of Maxwell’s equations in
s s - - e general curvilinear coordinates. A well known form of Max-
a-a=4,;, a-a=gj, a-a=g’ (17 \well's equations in curvilinear coordinates can be found in a
ij ; . . variety of reference$15—-18. These expressions are com-
whereg' is an inverse of the metrig;; . In general, a vector 5.y expressed in terms of the normalized covariant and
may be represented by its covariant componéntszia' or  contravariant components of the fields and in the absence of
by its contravariant componeris=e'a; . These components free electric currents they are
might have unusual dimensions because the underlying vec-

tors éi anda' are not properly normalized in a Euclidean

coordinate system. Components having the usual dimensions 5 E' 5 Hy

are defined byE;=e /Vg', E'=¢€/Jg; and E=ea Jo. 1 T ok
o o . o I . 1 42 43 i _ ijk 9

=E;i', E=€e'a;=E'i;, wherei;,i' are unitary vectors. Nor- €(9%,0%0%)— 5 _\/_5 g

malized covariant and contravariant components are con-
nected byE;=G;E!, E'=G"E; where G;;=g"/g;;g;,

G'=Vg; /g"g". Hi Ex

In the forthcoming presentation we concentrate on the Jo— o—=
analysis of the geometrical fiber profile perturbations that (gL q2.0%) @_i ik V9 (19
can be described by a general coordinate transformation of A A 5e ~ Jg g
the form

wheree'X is a Levi-Civita symbol. For further derivations it
X(p,0),y(p,0),z, (18)  is most convenient to write Maxwell’s equations in terms of

the normalized covariant components only. This will allow
where ,y,z) are the coordinates in a Euclidean coordinateus later in the paper to express the coupling elements only in
system. In an unperturbed cylindrically symmetric fiber, theterms of the integrals over the fields, avoiding the integrals
ith dielectric interface can be characterized by its ragius over the field derivatives. In further derivations we will deal
and a corresponding set of poirfts=p cos@),y=psin(@)],  With uniform in z coordinate transformations of the form
wherep=p;,0¢(0,2r). Given mapping18), perturbedth  [X(p,0),y(p,0),z] (nonuniform inz profiles are considered
dielectric interface can still be characterized by its unperin Refs.[4,5]), thus, some of the elements of the metric are
turbed radiusp; and is represented by a set of pointstrivial g”=g,,~1, g”*=g9"=g,,=9,,=0.
[X(p,0),Y(p,0)], p=pi,0e(0,27). As demonstrated in For a uniform fiber, propagation constant is a conserved
Ref. [4], vectors forming local covariant and contravariantnumber. This translational symmetry can be expressed as
coordinate systems associated with coordinage®,¢) will
have the following properties on the dielectric interfaces.

Contravariant basis vectorg is strictly perpendicular to the ( E(p,0.t) ) _ ( E(p.0)
perturbed dielectric interface?’ is almost parallel to the per- H(p,0,t) H(p,0)
turbed dielectric with an angle betweef and tangential to

the dielectric interface being proportional to the perturbationassuming nonmagnetic materiajs=1 we express Max-
strengths. Covariant basis vector§;, is almost perpendicu- well's equations(19) in terms of the normalized covariant
lar to the perturbed dielectric interface with an angle betweeroordinates only,

)~exp(i732—iwt). (20)
B

046613-5



SKOROBOGATIY et al.

~ JiH, ®
BHy=—g" — =+ V(g9 "E, + 0" 'Ey),

~ w
—BH,= S+ €Vo(9"E, + 99" E)),

~ JE, o
~BE=g" — =+ g(Jg*’g"H,+ g 'H,),

~ J
BE,=—g” — ’H,+g?"g"H,),
(21)
H H
= =
- c | V9" Vg
iE,= - ,

ai 3 5
I O R -
z_w\/a ap - 20 (22)

Note that by substituting components of the electric and
magnetic field422) into (21) we can form the nonuniform
Hamiltonian formulation of the Maxwell's equations in the
curvilinear coordinates in terms of the differential equation
relating the covariant components of transverse fields only.
For an unperturbed cylindrically symmetric uniform fiber,

PHYSICAL REVIEW E 67, 046613 (2003

mapping of an unperturbed onto a perturbed waveguide pro-
file. Next, we construct an expansion basis using the eigen-
fields of an unperturbed fiber by spatially stretching them in
such a way as to match the regions of discontinuity of their
field components with the position of the perturbed dielectric
interfaces. Finally, we find expansion coefficients by satisfy-
ing Maxwell's equationg21) and(22). In the following, we

first define an expansion basis and then demonstrate how
perturbation theory and a coupled mode theory can be for-
mulated in such a basis.

A. Expansion basis

We demonstrated previoudl¥,3,4] that eigenmodes of an
unperturbed waveguide can be described in the Hermitian
Hamiltonian formulation in terms of the transverse fields sat-
isfying an orthogonality conditioni5). In the following we
will concentrate on the case of fibers, while analogous deri-
vations can be applied to any type of waveguides. For cylin-
drically symmetrical fibers the natural choice of coordinates
are the polar coordinates. Condition of orthogona(8y for
the eigenfields of an unperturbed fiber can be expanded as

. B’
<¢Z*’m|8|¢2',m’>:|ﬁ Op,p = f[(H0B* Epp

om g pom’ | om’
~(Hope) " Egp TH

om
0B’ (EPB*)*

—Hpg (EoR)*13(p)dpde,  (24)

we denote the eigenfields corresponding to a propagation

constant@ and an angular integer indew as

( Eo(p,a,Z))m Eo(p) m
=< )exp(i,Beriem). (23
H%p,6,2) p

0
HY(p)/ ,
Fields (23) satisfy equation$21) and (22) where an unper-
turbed polar coordinate metric is diagongl®?=1; g°°*
=0; g°""=1/p%g"=p*.

VI. COUPLED MODE THEORY FOR MAXWELL'S
EQUATIONS IN CURVILINEAR COORDINATES

where in polar coordinates Jacobian of transformation is
J(p) =p, and notation for a field componep& (p, ) (either
electric or magneticis F{g'=F(p)exp(mé).

Now, consider a waveguide with a geometry slightly dif-
ferent from an original one. IfX,y,z) is a Euclidean coor-
dinate system associated with a perturbed waveguide, and
(p,0,2) is a coordinate system corresponding to an unper-
turbed cylindrically symmetric fiber, we define a coordinate
transformation relating such two coordinate systems as
[x(p,0),y(p,0),z], and a conjugate coordinate transforma-
tion as[p(x,y),0(X,y),z]. Using solutions for the fields of
an unperturbed fiber expressed in the coordingies,¢) we

In the previous sections we introduced geometrical variaform an expansion basis in a Euclidean coordinate system
tions of waveguide cross section in terms of the analytical(x,y,z) as

NE OWE,,(p(X y)iP+ \/ T iy )i

Vg m)= /— exdimeo(x,y)].
Opp P(p(x y))|p+ V 009 (}(p(x y))l
B

(25
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There are several important properties that basis vectorolve an unperturbed, cylindrically symmetric uniform an
fields (25 possess. First, if coordinate transformation isdielectric profile e(p,6). We look for a solution of Max-
Orthogonal (P:rp, r9: rg) then one can show that any well's equatiOI:lS(Zl), (22) in terms of the field eXpanSion
two basis fields of(25) are orthogonal in a sense of the coefficientsC’, 5 of the basis field$25) which in (p,6,2)
orthogonality condition  (24), (‘I’,e*,m|5|‘1’5r,m'> coordinate syst’em are essentially the eigenfields of an unper-
=(B'l|B']) 85 p' Smm - Moreover, in the case of nonor- turbed fiber. Thus, in covariant coordinates
thogonal transformations, basis fiel@5) will be almost or-
thogonal with an amount of nonorthogonality proportional to g°r m’
the strength of perturbation. O—Eg(p)

Second, basis field®5) are continuous in the regions of e

continuous dielectric of a perturbed fiber profile. In other 06

words, regions of discontinuity in the field components of E, g_Eg(p)

the basis field$25), by construction, coincide with the posi- E, ) 060

tions of the perturbed dielectric interfaces. = 2 Cf;, B op exp(im’ ).
Finally, due to the properties of the generalized coordinate H, B'\m’ ' g_H %(p)

transformations discussed in the preceding sectiomll be Hy B g% *

strictly normal to the perturbed dielectric interfaces, while g%

will be either strictly tangentialorthogonal coordinate trans- YT 2(p)

formation or almost tangential to the perturbed dielectric g

interfaces, deviating from strict tangentiality by an amount B

proportional to the strength of perturbation. As the unper- (26)
1 0 0 0 0 :
turbed components of the fields,,H, andE,,H, salisty  \ye then substitute expansi2é) into Eq.(21), multiply the

the correct boundary conditions on the unperturbed dielectrig, J jified equation€21) on the left by the proper components
interfaces the field componen(5) of (25 basis functions ¢ 1 ynperturbed fields and integrate over the fiber cross

V;’}”' either exactly s?tisfy thﬁ propelr boundary Conditfions ONsection to exploit an orthogonality condition satisfied by the
the perturbed interface@rthogonal coordinate transforma- unperturbed solutiong4). Manipulating the resultant equa-

tion) or will satisfy them approximately deviating only by an jons (see Ref[4] for detail§ we arrive at the following set
amount proportional to the strength of perturbation. of equations:

B. Coupled mode theory "BB éﬁz M 6.1.3’ (27)
In the preceding section we derived the for24) and
(22) of Maxwell's equations in the curvilinear coordinates WhereBﬁ*,B;(,8’/|,8’|)5ﬁﬁ, is a normalization matrix5),
(p,0,2). While seemingly complicated, these equations in-M is a matrix of coupling elements given by

Mﬁ*,m;ﬁ’,m’:<dfﬁ*m||\7||¢B’,m’>

Exp)\ ™ ed, e, 0 0 o0 o| [Exp|™
E%(p) edy, €dgyy O O 0 O E%(p)
o EZ(p) 0 0 e 0 0 0| Elp
:EJ expi(m"=mel} Hi(p) 0 0 0 d, d, 0 || K| Iededs,
H%(p) 0 0 0 dy dy O H%(p)
H2(p) 0 0 0 0 0 dy HO(p)
B* B!
(28)
|
integration is performed over an unperturbed fiber profile, dpgzdgp:gpﬂ\/a,
and nonzero elements ob® matrix M are
0606 Opp
_ 99 . 199
d,=9" gorr (29) dgs=9 W,
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Opp~066
dzzz—go\/—g gg . 0t F

Equations(26) present an eigenproblem with respect to the
values of the modified propagation constaptsand corre-
sponding vectors of expansion coefficieﬁlglj; and can be
further solved numerically.

Note that the matrix of coupling elemenis Hermitian :

and, thus(yge wIM|Yg ) =(¥pr M| thgs m*. In Eq. =

(28) we can further perform an integration of mathk over i findamental
9 . . . . -0~ CMT, 8=0.005
0, M exdi(m —m)#]dé, as such an integration is decoupled 3 -2afonbenE. 43108
from the integration over the fields which are the functions S pRIOREEE, 22! !
of p only. 07 L L= 2nd Order PT, 5-0.02 ~N* &%‘wx |

To summarize, given a geometric perturbation of a uni-
form fiber profile, we characterize such a perturbation in
terms of a coordinate transformatidx(p,6),y(p,0),z]
where an original cylindrically symmetric fiber profile in co- ~ FIG. 2. Error in the values of the propagation constant of the
ordinates p, 6,z) is mapped onto a perturbed fiber profile in fyndamentalm:O mode of a pgrturbed dual core metal Jackgted
Euclidean coordinatesx(y,z). Maxwell's equations trans- fiber [see Fig. 1b)] as a function of the number of expansion
formed into a perturbation defined curvilinear coordinate™°des- Dotted curves correspond to the coupled mode theory
system can be recast into a generalized Hermitian eigenvalt{g MT) while solid curves correspond to the Seco'ld Ozderoperturba'
problem(27). Solving such an eigenvalue problem governed 10n theory. Strengths of the perturbations are0.5%,1%,2%.

by the matrix of coupling element®8) and (29) one can — 1, 12 guided modes of angular index=+2, 8 guides

find the modes of a perturbed uniform waveguide to any . B
degree of accuracy. modes of angular indexn=*3, and there are no other

Moreover, Eq.(27) allows a perturbative interpretation. guliﬂed rkrllo;ljes for Fh;nf higllher angular indices in thisf fiber
As a metric of a slightly perturbed coordinate system is onlyéan;uol;?ingee;ﬁ)are infinitely many evanescent modes for any
slightly differer;]t froryrI the mel':ric_ of %n unperturb”ed coordi- T, e anali/ze convergence of the coupled mode theory
nate system, that will naturally introduce a small paramete 7 . . : .

f(r)]r small geomegicgl perturbat.ion? of ﬁ fibe{ profil;—:-.hExath;;ggirr‘:gE'I;r(rB S\/\C/ﬁg?g svzr\tlégbuéilgggssdeisoc;ab%?e?gcgﬁ(:ori(rj&r;\-te
the same perturbative expansion for the values of the mo . i ) o

- : ; ace and outer metal jacket are kept fixed while waveguide’s
propagation constants as in Eq9) and (12) holds in our first core radius is ch(J':mged froRElF:o Re(1+6). In pri%—

. _ C "
f ;S,a’ ngeée I\?vit;raedBOfigge(rjeila%%r? glen\:\;c;#:(d (;‘S;?rc?g a(g;?i?n ciple, there are infinitely many mappings that keep the sec-
constantso o,f un erturobed modes ond dielectric interface and an outer metallic jacket intact
P ' while changing the radius of the first core. The choice of a

particular mapping can influence convergence of the coupled
mode theory, however, exactly the same result should be
achieved for the equivalent mappin@sappings are equiva-
the multilayered dielectric waveguides. Modes and propagalhe samg Thus, we choose mappiri@)-(1) in the form
tion constants of unperturbed cylindrically symmetric dielec-
tric waveguides are calculated by transfer matrix approach f(p)=p (P~ Re2)(p—Rm) _
detailed in Refs[1,19]. (Rei=Re2)(Rea—Rm)

As a test system we consider a two core dielectric wave-
guide[see Fig. 18)] with radii R;;=1a, R.,=2a, and cor- Such a mapping leaves the second dielectric interface and
responding indices of refractiom.; =3, ne,=2. Dielectric r_netalhc jacket unchanged, while changl_ng the radius of the
cladding is assumed to bag,q=1. Waveguide is sur- first core fromR¢, to Rg;(1+6). Coupling elements are
rounded by a metal jackémetal is assumed to be idgait cEllcuIated exactly fron§28) with selection ruleAm=0 and
Ry,=4a. Frequency is fixed and equals=0.2(27c/a), M matrix given by d,,=—6&{[pf'(p)—f(p)]/p[1
propagation constants are measured in unitsa2 wherea  +6f'(p)]},  d,,=dy,=0,  dge=5{[pf'(p)—f(p)1/p
defines the scale and can be chosen at will. Metallic bound+ 6f(p)}, d,,={1—p/[p+f(p)][1+6f'(p)]}. For &
ary conditions of a waveguide’s outer jacket eliminates the=0.5%,1%,2% perturbations we plot errors in the propaga-
radiation continuum allowing a discrete spectrum of guidedion constant of perturbech=0 fundamental mode calcu-
(propagation constant is pure reand evanescent modes lated by the coupled mode theory, E§87)—(29), and sec-
(propagation constant is comp)eX here are altogether eight ond order perturbation theory, Eq®), (28), and (29 as a
guided modegforward and backward propagatingf angu-  function of the number of expansion modss(see Fig. 2
lar index m=0, 16 guided modes of angular inder Note, that only the modes with the same angular inteae

0 1

N

VII. STUDY OF CONVERGENCE OF THE PERTURBATION
EXPANSIONS AND A COUPLED MODE THEORY
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FIG. 3. First order ins split | By-1— Bm=_1| in the propagation © (2ncfa)

constants of the first twm=1 modeqfundamental, and the closest
to the fundamental modesf a composite core fiber under a non- ;¢ the m=0 mode of a composite core fiber under a nonuniform

uniform elliptical perturbation(see Fig. 1p. Solid curves corre- o circular perturbatiofsee Fig. 1d)]. Solid curves correspond to
spond to the frequency domain MPB code, while dotted curvegq frequency domain MPB code, while dotted curves correspond to

correspond to the first order perturbation theory. Strength of th,s second order perturbation theory. Strength of the perturbation is
perturbation is6=0.5% for both modes. 5=0.1a.

FIG. 4. Second order ia shift AB in the propagation constants

coupled by scaling perturbation. Inclusion of only a singleyeqretical predictions with the results of a frequency domain
unperturbed fundamental r_nO(N:l into coupled mode code called MIT photonic banddPB [20]) developed at
theory corresponds to the first order perturbation thé8)y i1, Over a large range of frequencies we have an excellent

Note from Fig. 2 that the resulting error scqles(ﬁs Signi-  agrement between the first-order perturbation theory results
fying that the first order perturbation theory is correct, reduc—4nq the results of the frequency domain MPB code.

ing the error to the second order. Inclusion of the re§t22f the Finally, we present analysis of nonconcentric perturbation
modes(guided and evanescgrieads to a very fast-N of a composite core fiber where one of the interfaces is
convergence of the coupled mode thetgtted curvep Er-  ghifed with respect to the center of cylindrical symmetry

rors in the second order perturbation thedsplid curve$ [see Fig. 1d)]. We choose mappinfl)—(3) in the form
saturate with only 20—30 expansion modes and the resultant

errors scale as®, signifying that the second order perturba- (p—Re)(p—Ry)
tion theory is correct, reducing the error to the third order. fu(p,0)= (Ru—R)(Ra—R.)’
Next, we analyze nonuniform elliptical perturbation of a ¢t Te2/ATel Tm

composite core fibefsee Fig. 1b)]. We choose mapping

(1-(2) in the form fy(p,0)=0. Such a mapping leaves the second dielectric

interface and metallic jacket unchanged, while shifting the
(p—Re2)(p—Ry) first dielectric interface horizontally bys. We evaluate
f(p)=p(R "R (Ru—R.)’ change in the propagation constant of the fundamemtal
¢l Te2/iTel Tm =0 mode. From expressiof®) and the form of the matrix

Such a mapping leaves the second dielectric interface arffeMeNts(28) one can derive tha¥l g« o,50=0, and, hence,
metallic jacket unchanged, while letting the radius of the first® change in the propagation constantrof 0 mode scales
core vary in the rang&.,(1+8). Coupling elements are 25 second power of perturbation strength. To apply expres-
calculated to the first order by Eq@8) and 29 with selec- sion (9) to the second order we have to calculate coupling
ton rule |[Am/=2 and M matrix given by d elements forAm=0 to the second order, and coupling ele-
= 8l[pt'(p)+(p)1/2p} ?" ments forlAm|=1 to the first order. MatriM for Am=0 to

the second order is given by,,=(5%2)f'(p)?, d,=dy,

 [f(p)+pf'(p)] =0, dgp=(8%12)f"(p)2, d,,= — (8%12)f' (p)?. Matrix M for

dyp=dg,=sgr{Am)ié 2p ’ |Am|=1 to the first order is given by,,=—(8/2)f'(p),
d,e=dg,=sgnAm)i(s/2)t"(p),  dpe=(512)t'(p), d;;

dge=S{[T(p) +pf' (p)12p}, d,=6{[pf'(p)—T(p)]/2p}. =(68/2)t"(p). For 6=0.1a perturbation we plot(Fig. 4

For 6=0.5% ellipticity we plot (Fig. 3) splitting in the change in the propagation constang of the fundamental
propagation constan{®,,—,— Bm=_1| of originally degen- m=0 mode calculated by second order perturbation theory
eratem==*=1 modes calculated by first order perturbation (9) using coupling element28). We compare our theoretical
theory (12) using coupling element®8). We compare our predictions with the results of a frequency domain code
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called MPB[20], developed at MIT. Over a large range of 03¢ - - - - ; - ;
frequencies we have a good agrement between the secor

order perturbation theory results and the results of the fre- I |
guency domain MPB code. Moreover, the rate of conver-
gence of the second order perturbation theory with the num-
ber of modes in the expansion basis is almost cubic. 03

028

T (ps/m)

VIll. PMD OF HOLLOW CORE BRAGG FIBER

As a nontrivial application of our method we calculate ~ °* |

deterministic PMD due to elliptic perturbation in the high-
index-contrast hollow Bragg fiber. Bragg fiber under study is

the same as in Ref1]. It has a hollow coréindex of refrac- 022 L

tion unity) of 30a surrounded by omnidirectional mirror that

comprises 17 layers, starting with high-index layer, with in- 02 : . : : : : '

dices 4.6/1.6 and thicknesses GAR7&, respectively. Mir- e I A Y I BE B e e
ror is surrounded by cladding of index 1.6. The frequency of Mum)

the fundamentam=1 mode is chosen at the point of its
lowest radiation los$24 dB/km) in the first omnidirectional
band gap and is equal 0= 0.24(2wc/a). If we make this
frequency to correspond to the standard 1.55 m of tele-
communications, we hava=\w=0.37 um. Note that in munication silica fiber with ellipticity correlation length of 1
the current example the ratio of the structure diaetside M (spun fibej the intermode dispersion parameter is ap-
core radiup to the size of the smallest featugeirror layer ~ proximately 0.1 ps/m.

thicknes$ is so large that evaluation of PMD using generic

frequency domain mode solvers or time domain codes be- IX. CONCLUSION

comes prohibitively c_:omputation_ally in_tensive. We e_valuate In this work, we presented a different form of the coupled

PMD in terms of the intermode dispersion parametgiven  mode and perturbation theories to treat general geometric
by expressior(13) using first order perturbation theory that peryrhations of a waveguide profile with an arbitrary dielec-

we developed in this paper. We assume the same amount gfc index contrast. We demonstrated that for perturbations in
ellipticity & for all the layers in the mirror and metallic g index-contrast profiles our theories exhibit higher than

boundary conditions outside of the last layer of the mirror.jnaar convergence to the exact result with the number of
Coordinate mapping to describe such an ellipticity will be gy yansion modes, and when perturbation is small perturba-
(1)-(2) with f(p)=p. Coupling elements are calculated 0 tjon theory approach is demonstrated to give correct results
the first order from Eq(28) with selection ruldAm|=2 and ot only to the first order but also to the higher orders of

M matrix given byd,,=—4, d,,=dg,=sgnAm)ids, dyy  accuracy. To our knowledge, this is the first time perturbation
=4, d,,=0. For 6=1% ellipticity we plot (Fig. 5 inter-  theory approach is developed to deal with arbitrary profile

mode dispersion parameteras defined by Eq(13) for the  variations in high-index-contrast waveguides to higher or-

hollow core Bragg fiber. Note that for the regular telecom-ders of accuracy.

FIG. 5. Intermode dispersion parametefor the fundamental
HE.; mode of a hollow Bragg fiber under the unifordx 1%
elliptical perturbation.
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