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Halo formation and chaos in root-mean-square matched beams propagating
through a periodic solenoidal focusing channel
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The dynamics of continuous space-charge-dominated beams propagating through a periodic solenoidal fo-
cusing channel is studied using a test-particle model. It is shown that nonlinearities in the self-fields induce
chaotic particle motion and beam halo formation for beams that are root-mean-square matched into the focus-
ing channel but have nonuniform density profiles transverse to the direction of beam propagation. In particular,
two parabolic density profiles are considered. For beams with hollow density profiles, it is found that excessive
space charge at the edge of the beam induces two pairs of stable and unstable period-one orbits in the vicinity
of the beam core envelope, and that the chaotic layer associated with the unstable period-one orbits allows
particles to escape from the core to form a halo. On the other hand, for beams with hump density(peofiles
with high densities on the beam axis and low densities at the beam), edgefound that excessive space
charge on the beam axis induces an unstable fixed point on the axis and two stable period-one orbits off the
axis inside the beam, and that the chaotic layer associated with the unstable fixed point is responsible for halo
formation. In both cases, the halo is found to be bounded by a Kolmogorov-Arnold-Moser surface. The ratio
of halo to beam core envelope is determined numeric$063-651X97)07106-7

PACS numbeps): 29.27-a, 41.75-i, 41.85—p

I. INTRODUCTION

<1.
L . . . . 4ope
Beam halo formation is an important issue in the design 0

and development of next generation high-power particle aChiare, K =2/ ygﬁﬁ is the normalized beam perveaneeis

celerators and high-power microwave and millimeter Wavey . unnormalized rms emittance of the befin], v is the
tubes for a wide range of applications such as h|gh—energ]£<,)udker parameter, angl,c andy, are the(averagéavelocity

a_md nuclear _phyS|c§ research, accelerator product|o_n of "End relativistic mass factor of the particles, respectively. For
tium, heavy ion fusion, and high-power, high-resolution ra-,n electron beam

dar[1]. Depending upon the application, beam halos, if not

controlled, can lead to intolerable beam losses, radio-
SK (S) Iy

7,
YoBb

1
frequency(rf) breakdown, radioactivity buildup in the accel- =2.9x10"° —

erator, and emittance growth, to mention a few examples. It 4ooe To \ €n

Iy
22
YoBb

has been recognized recenfl2—9] that for space-charge- , i
dominated beams, halo formation is due to chaotic bean¥here I is the electron beam current in amperes,
dynamics induced by nonlinear space-charge effects. Chaotjc YbBo€ iS the normalized rms emittance in meter-rad, and
particle orbits not only arsensitive to initial conditionsbut IS in meters. For an ion beam,
also occupy a larger region in phase space than regular par-
ticle orbits, resulting in beam halo formation and growth in —1.6x10°8 i (9 (E
the total(edge emittance. 4oge oA \e/\ e,

In this paper, we explore the mechanisms of chaotic be-
havior and halo formation in continuous, space-chargewhereA andg/e are the atomic mass and magnitude of the
dominated beams propagating through a periodic solenoid&harge state of the ion, respectively,is the ion beam cur-
focusing channel with well matched root-mean-squanes) rent in amperess,= y,8p€ IS the normalized rms emittance
beam envelopes. For a periodic solenoidal focusing channéh meter-rad, and is in meters.
with the periodicity lengtts and the vacuum phase advance In particular, use is made of a test-particle model to show
oy, aspace-charge-dominated beasatisfies the condition that nonlinearities in the self-fields induce chaotic particle

(9] motion and beam halo formation. This analysis pertains to
beams that are rms matched into the focusing channel but
SK have nonuniform density profiles transverse to the direction
>1, of beam propagation. Two parabolic density profiles are con-
4ooe sidered. For beams with hollow density profilés., with

low densities on the beam axis and high densities at the beam
whereas aemittance-dominated beasatisfies the condition edge, it is found that excessive space charge at the edge of

1063-651X/97/586)/755718)/$10.00 55 7557 © 1997 The American Physical Society



7558 Y. FINK, C. CHEN, AND W. P. MARABLE 55

the beam induces two pairs stable and unstable period-or
orbits in the vicinity of the beam core, and that the chaotic
layer associated with the unstable period-one orbits allow: &
particles to escape from the core to form a halo. These resul e e T e
agree qualitatively with recent experimental observations o
halo formation in a potassium (K ion beam in the 2-MV & I
Heavy lon Injector Experiment at Lawrence Berkeley Na-
tional Laboratory(LBNL ), where the core of the beam has a
sharp-edged hollow density profilé1]. On the other hand,
for beams with hump density profilgse., with high densi- FIG. 1. Schematic of charged-particle beam propagation
ties on the beam axis and low densities at the beam)edlge hrough a periodic solenoidal focusing channel, where the oscilla-
is found that excessive space charge at the beam axis inducggy curves illustrate the envelope for the rms-matched beam in the
an unstable fixed point on the axis and two stable period-onfcusing channel.
orbits off the axis inside the beam, and that the chaotic layer
associated \_/vith the unstable fixed point is_ responsible fOWheres=z is the axial coordinates is the fundamental pe-
halo formation. In both cases, the halo is found 10 bejqgicity length of the focusing field, and the prime denotes
bounded by a Kolmogorov-Arnold-MosdiKAM) surface erivative with respect ts
[12]. The ratio of halo to beam core envelope is determineéj '
numerically.

Results presented in this paper are qualitatively the same A. Beam self fields
as those obtained previously for rms-matched beam propaga-
tion through an alternating-gradient quadrupole magnetic fo
cusing channel[4]. An important conclusion from the
present analysis is that the reported chaotic behavior a

beam halo formation occur, regardless of whether the bear\pvith the lattice periodS, and (c) the transverse kinetic en-

haiﬁg ;J“gﬂ?;;ticgncgf;:g Carlose? isseggcf)glllows In Sec. i Weergy is small compared with the axial kinetic energy, i.e.,
9 pap : * U o oye+tvi<vi=pic?. Here,N is the number of particles per

present a test-particle model for studies of the dynamics of X Al h d h il d
rms-matched beams with a parabolic density profile. TheuﬂIt axial lengtf nll an hq are tde fpllar:]lc.e rest mzs;_ an
beam envelope equation is derived following the work byC arge, respectively, is the speed of light ivacug andv is

Sacheref10], and is used to determine the core radius of thethe particle velo_C|ty. Furthermore, we assume that the beam
rms-matched beam. The equations of motion are derived fap "M matched into the focusing channel and has the follow-

test particles. A distribution function, which is consistent "9 density profile:

To derive the transverse equations of motion for indi-
vidual test particles, we make the paraxial approximation
hich implies (a) the Budker parameter is small compared
ith unity, i.e.,g?N/mc®<1, (b) the beam is thin compared

with the assumed parabolic density profile and that also ap- 2 for r<ry(s)
proaches the Kapchinskij-Vladimirski{KV) distribution Np(S)+ dNy(s)| 1— ——|, pi>/
[13] continuously as the density becomes uniform, is em- Mb(:S)= ro(s)

ployed in order to specify the initial conditions of the test 0, for r>ry(s),
particles. In Sec. lll, the effects of space charge on the dy- 3

namics of a KV beam are illustrated in the context of the
present test-particle analysis. The Poincare surface-of-sectiQhere r = (x2+y2)2 is the radial coordinater,(s)=rp(s

technique[12] is used to study the test-particle motion under ; s) is the radiugcore envelopefor the rms-matched beam,
the influence of the nonlinear self-fields associated with th‘ﬁb(s)= N/wrﬁ(s), and 8, (s) = 5N/wr§(s) is a measure of

charge density nonuniformity, including chaotic particle mo-ponyniformity in the beam density profile. The beam density
tion and associated processes of halo formation. Finally, COrofile is shown in Fig. 2. It is readily shown that the beam

clusions are drawn in Sec. IV. radiusr,(s) is related to the rms beam radi(s(s) )2 by

Il. MODEL AND ASSUMPTIONS n 4
_ _ _ _ b of, >0 — hump
We consider an intense, continuous charged-particle beam

propagating at axial velocitg,ce, through a periodic sole-

noidal focusing channel, as shown schematically in Fig. 1. In

the thin-beam approximation, the applied magnetic field for

the focusing channel is given by n,

BoYx,y,5)=B,(5)&,~ iBL(S)(x&+Y8,) (1) AN 55 <0 | hollow
b

and 0 ! r/r

Be(x,y,s)=B®{(x,y,s+9), 2 FIG. 2. Transverse density profiles described by i
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ra(s)
(rz(s)>=N‘1J dx dy ny(r,s)r?(s)= 29 " (4
where the geometric factay is defined by
g=(1-6ny/3n,) L. (5)

For a beam with a uniform density profiléi,(s) =0, which
corresponds to the KV equilibriufi3].

7559

whered/9s=0 in the paraxial approximation, the scalar po-
tential for the self-electric field is obtained by integrating
Poisson’s equation

PG

W+ﬁ_>/2)q)<s>:_4qub(r,s), ®)

The self-electric and self-magnetic fields associated withynd the vector potential for the self-magnetic field is defined

the beam space charge and current are expressed as

=(s) PPN PN
E¥(x,y,s)=— ex5+eywd> (X,Y,8), (6)

é(s)(x,y,s)=

e i—é 9 A (x,y,s) 7)
Xogy Yox)E T

db(s)(r,s)=[

B. Determination of the rms-matched envelope

The radius for the rms-matched beam is determined from

the envelope equation

d’ry, gK (4ge)?

g T KA K_T:O’ 11
which is derived following the analysis by Sachef&@)]. In
Eq. (11), the geometric factog is defined in Eq.(5); the
focusing parameter is defined by

(s)= 4B [F_ (s+9) (12)
"z 2ypBem&) 7 '
where yb=(1—,8§)‘1’2; the normalized beam perveance is
defined by
K= 29°N ; (13
YoBemc”’

and the rms emittance is assumed to be constant and is

defined bye= ex= ey and[10]
E;:(<’)‘(’2><')‘(‘/2>_<’)‘(')‘('/>2)1/2’

e5=((Y 2Ny 2= (WY )2

(149

(14b

—q(N+ SN)r2/r(s)+qoNr#/2ri(s),
—q(N+ 6N/2)—2gNIn[r/ry(s)],

by
AP(x,y,5)=Br®(x,y,5)&,. 9

The solution to Poisson’s equati¢d) is

for r<ry(s)

for r>ry(s). (10

with qb(s)=f§0 VKk,(s)ds.

In general, the solutions to the envelope equatid can
exhibit both regular and chaotic behavi{&;8]. The present
model describes the dynamics of an rms-matched beam
whose radius corresponds to a periodic solution to the enve-
lope equatior{11). When the strength of the focusing field is
moderate, Eq.(11) has a unique periodic solution with
rp(s)=rp(s+9S) [3].

For the case of an even focusing lattice wikk(s)= «,
(—s), it can be showf3] that Eq.(11) is invariant under the
time-reversal transformatiors(r,)—(—s,rp), and that the
periodic solutionr,(s)=r,(s+$S) has the property/(0)
=0. In this case, the rms-matched beam envelope can be
determined numerically using a shooting method.

Figure 3 shows the periodic envelope for an rms-matched
beam propagating through a periodically interrupted solenoi-
dal focusing channel with the focusing parameter defined by
the following periodic step function:

for — p/2<s/S< 7/2,
for n/2<s/S<1- /2,

K20,

Kz<s>=[ 5 (16)

where 7 is the filling factor. The vacuum phase advance for
the particle motion in this lattice is given approximately by

112
=(7S"k0) "2, 17

Op=

Sfosxz(s)ds

Here, ( ) represents the ensemble average over the beam _
particle distribution, and the particle transverse displacemerwhich is a measure of the strength of the average focusing

in the Larmor frame of referencex,§y), is related to that in
the laboratory frame of referencex,{), by
X(s)=x(s)cog #(s)]—y(s)sin4(s)], (153

Y(s)=x(s)sin ¢(s)]+y(s)cog ¢(s)], (15b)

field. The choice of system parameters in Fig. 3 corresponds
to: 7=0.2, S?k,0=12.0 (0,=88.8°), andSK/4e=10. It

is evident in Fig. 3 thatr/[(0)=0, as expected fok,(s)
=k,(—s). Note also that the results shown in Fig. 3 are
independent of in terms of the scaled variables defined by
s/S, S’k,, and (4eS) Yy,
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* Red | & oyt 3 L aGixy.9-0. (19
---- Field | g2 T A9y FEmE ay (x,y,8)=0,
n — Envelope

where®®)(x,y,s) is defined in Eq(10), and the tilde over
, the variablesx andy has been omitted. Heretofore, the vari-
8 ablesx andy should be understood as the variabkeand
y, respectively.
For a uniform-density beam witbN =0, the equations of

-
'
'
]
'
'
)
'
)

e cencacc g e pa N many

o

! 4 motion (18) and (19) are linear for the test particle in the
beam interior withr <r(s), but become nonlinear for the
0 ) . . 0 test particle outside the beam witb>r,(s). It is important
0 1 2 3 to point out that for nonuniform-density beams, however, the
s equations of motion are always nonlinear, regardless of

. . o whether the test particle is inside or outside the beam. It will

FIG. 3. Beam radius as a function of propagation dist&f®  he shown in Sec. Ill that for beam propagation through a
an _rms-matched beam propagatlng through a step-function 'att'cﬁeriodic solenoidal focusing channel, E¢8) and (19) are
ger)':gg tt(?_' Eqélze)'szieri’ltgeo (2205280:3 f)ysgir:srﬁzr:itgrﬁ_ ﬁg"e'generally_no_nintegra_ble and support chaotic solutions.

Po N80 > a0 Vo DR ' . In the limit of a uniform solenoidal focusing channel with
hc_)nzqntal and ve_rtllcal axes;_rlyz, and Xz are scal?d by the multi- k,(S) = const, the rms-matched beam radius is constant. As a
plication factorsS ™, (4geS) ™%, andS’, respectively. result, the equations of motioil8) and (19) are integrable.

_ _ In this case, test particles have regular orbits and are always
C. Transverse equations of motion confined inside the beam envelope.
It can be shown that in the Larmor frame of reference, the
transverse equations of motion for a test particle in the com- S
bined periodic solenoidal, and self-fields are expressed as D. The initial distribution

In the present test-particle model, an initial distribution

2
d_s)2(+KZ(S)X+ %cz 7 ®(x,y,s)=0, (18  function corresponding to the parabolic density profile de-
d YpBpMC” IX fined in Eq.(3) has been derived and is expressed as
NZO sow—1)+ H(W), 0<éh,=<n
— - <dén,=<
, , 1677265[1 ( ) 87726m ( )1 nb nb ,
fb(X,y,X Y ,S:S()): N— SN 25N (20)
S(W—1)+ RZH(R?)8(x")8(y"), —Np,<dh,<
erm( ) (s (R9S(x")6(y"), —np<ény<O,
|
whereR?= (x?+y?)/r2, It is readily verified thatny(x,y,s=Sg)=/fu(X,y,x",y’,s
=sp)dx’ dy’. Moreover, the distribution functiofy, has the
r2 1 property that it approaches the KV equilibrium distribution
W(x,y,x",y’,s=8p) = 21 62 [13] continuously a$h,— 0. Therefore, the beams under the
b m present investigation are perturbed directly from the KV
X[(rpX’ —Xry)2+(rpy’ —yri)?l, equilibrium, which is the only known Vlasov equilibrium for
periodically focused intense charged-particle beams.
(21 To summarize, equatior{48) and(19) together with Egs.
(10), (11), and(20) form the basis for subsequent investiga-
|1, Osxs=1, tions of chaotic particle motion and halo formation in an
H(X)= 0, otherwise, (22) rms-matched, space-charge-dominated beam propagating
through a periodic solenoidal focusing channel.
and the maximum emittancs, is defined by
S lll. NUMERICAL RESULTS
b ~ N
c 1 3h,’ for 0= ésn,=<ny, In this section, we discuss results of a numerical study of
—= 28, Sh2 (23)  the beam dynamics for the case of the step-function lattice
€m ( +270 %) for —f,< oM, <O. described by Eq(16). In the numerical study, the envelope
3n, 3n; equation(11) and the particle equationd8) and (19) are
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solved simultaneously using a fourth-order Runga Kutta in- 6
tegrator. The initial conditions for the envelope equatib) (a)
are chosen such that they yield the periodic beam envelope 4!
as described in Sec. Il. Becauge=0=Yy’ is invariant, we
choose the initial conditiong(0)=0=y’(0) in all of the a
analyses discussed in this section. Moreover, for all of the
results presented in Figs. 4-6, 8, and 9, the phase space X ol
variables are scaled according to:
2r
S X
s T Y0 n
rp(0)x’ , Te(0)Y’ 0 0 1 2 3
X' — de, andy’ — e, (24 X
wheree,, is the maximum emittance defined in EJ). 6
41
A. Uniform-density profile
Although the equations of motiofl8) and (19) have a 27
simple form, the transverse beam dynamics exhibits rich be- ,
havior whenever space-charge effects become significant. X 0r
This is illustrated in Fig. 4, where Poincare surface-of-
section plotg11] are shown in the phase spaceX’) for 27
both emittance- and space-charge-dominated uniform-
density beams. The choice of the system parameters in Fig. 4 4t
corresponds tozn=0.2, S?k,,=10.0 (0,=81.0°), g=1.0
(8n,=0), and SK/4e=0.5 for the case of an emittance- -6_3 ERR 5 : 5 3
dominated beam ifa) and SK/4e=6.0 for the case of a X
space-charge-dominated beanthih For each case shown in
Fig. 4, 41 particles are loaded initially at=0 uniformly FIG. 4. Poincare surface-of-section plots in the phase space

along thex axis fromx=—2.0 to 2.0, and the initial condi- (x,x’) for emittance- and space-charge-dominated beams propagat-
tions are indicated by the crosses. The Poincare [habis  ing through 2000 lattice periods with uniform density profiles. The
generated here by plotting the positions and momenta of thehoice of the system parameters correspondszte0.2, Sk,
test particles as they pass through the lattice pomits =10.0 (0,=81.0°), g=1.0 (6n,=0), and SK/4e=0.5 for the
=1,2,...,2000. case of an emittance-dominated beantinandSK/4e= 6.0 for the
Figure 4a) shows a simple and regular phase-space strucsase of a space-charge-dominated beartijin
ture for the case of an emittance-dominated beam. By con-
trast, Fig. 4b) shows a rather complicated phase-space struc-
ture for the case of a space-charge-dominated beam, Figure 5 shows Poincare surface-of-section plots in the
containing a mixture of regular orbits, nonlinear resonancesphase spacex(x’) for a beam with a hollow density profile.
and chaotic layers. In Fig.(#), all of the test particles loaded The system parameters in Fig. 5 amg=0.2, S?k,0=7.46
initially inside the beam envelope have regular orbits, andoy=70°), SK/4e=14, andén,/n,=—0.1 (g=0.96) for
these particles correspond to those in the KV distributioncase(a) and sn,/n,=—0.2 (g=0.93) for casgb). For ev-
However, because Eq$18) and (19) are nonlinear for r ery case shown in Fig. 5, 41 test particles are loaded initially
>rp(s) and because the strength of the nonlinearity is pro-on a circle defined by(x,x’,0,0,0)=1 in the phase space,
portional to SK/4e, the orbits of some of the test particles and the initial conditions are indicated by the crosses. Note
that cross the beam envelope become chaotic,semsitive  thatW=1 is the maximum value achieved by any particle in
to initial conditions The chaotic particle orbits lie in the the perturbed KV distributiorf,. The Poincare surface-of-
chaotic layers are bounded by the invariant tori known asection plots are generated here in the same way as in Fig. 4.
KAM surfaces[12]. In Fig. 5, there is a pair of stable and unstable fixed points
It should be emphasized that all of the test particles in that the edge of the beam, i.e., at,X’')~(1,0) in the phase
KV distribution will remain inside the beam envelope, de- space. The unstable fixed point is located inside the beam,
spite the fact that the underlying equations of moti@8)  whereas the stable fixed point and associated island are lo-
and(19) are nonintegrable and support chaotic solutions forcated outside of the beam. Because of the symmetry in the
r>rp(s). As far as beam halo formation is concerned, it isunderlying equations of motiofil8) and (19), there is an-
important to identify the mechanisms by which the test parother pair of stable and unstable fixed points atx()
ticles initially in the perturbed KV distributiofi, defined in  ~(—1,0). These fixed points, which correspond to periodic
Eg. (20) enter the chaotic layer. This is the subject mattersolutions of the equations of motidid8) and (19), are in-
discussed in the remainder of this section. duced by excessive space charge at the edge of the hollow

B. Hollow density profile
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1.5 2 -1 0 1 2

FIG. 6. Poincare surface-of-section plots in the phase space
(x,x") for a beam propagating through 20 lattice periods with a
hollow density profile and 2000 test particles. Here, the choice of
system parameters corresponds ©=0.2, SPk,,=12.0 (o
=88.8°), SK/4e=10, andsn, /n,=—0.95 (@=0.76).

gation through 20 lattice periods of the focusing field with
2000 test particles loaded initially on the circle
W(x,x’,0,0,0)=1. The halo size in Fig. 6 i%,,,=1.8, i.e.,
1.8 times the beam core radius.

Shown in Fig. 7 as the dashed and bold solid curves are,
respectively, examples of regular and chaotic trajectories for
) , , , , the same choice of system parameters shown in Fig. 6. In
-5 -1 05 0 05 1 15 Fig. 7,s is scaled by the multiplication fact@ *, and both

X x and =*r, are scaled by the multiplication factor
(4g€S)~ 2. The regular trajectory is initialized well inside

FIG. 5. Poincare surface-of-section plots in the phase spacg,e peam envelope witk’ =0, whereas the chaotic trajec-
(x,x") for a beam propagating through 2000 lattice periods with 8y s jnitialized near the unstable fixed point with=0.
hollow density profile. Here, the choice of system parameters COrlso shown in Fig. 7 as the two solid curves is the periodic

responds t0:7=0.2, S?k,,=7.46 (0,=70°), SK/4e=14, and i : i
5P, A= —0.1 (g=0.96) for case(@ and dhy/Po——0.2 (g boundary ¢r,) of the rms-matched beam. The chaotic tra

=0.93) for casdb).

beam. Associated with the two unstable fixed points is a thin
chaotic layer(separatrix, which occupies both the region 4t
with W<1 and the region with/V>1 in the phase space.
Particles in this thin chaotic layer can cross the beam enve-
lope, forming a halo around a dense core of beam determined

by W=1 in the phase space. Although the chaotic layer
has a sizable excursion along tké axis, it extends to
x~*1.1 along thex axis. Therefore, the halo size in both
examples shown in Fig. 5 is about 10% larger than the beam

; ; . . — Envel
core radius. Moreover, because the chaotic layer is thin, the n nve ?pe ]
particle density in the halo region is expected to be very — Chaotic orbit
tenuous compared with that in the core region. ---- Regular orbit
. . . . -6 1 L '
Although the Poincare surface-of-section plots in Fig. 5 0 5 10 15 20
are obtained for beam propagation through a long focusing s

channel with 2000 lattice periods in order to show fine struc-

tures in the phase space, it should be emphasized that the £ig 7 Shown as the dashed and bold solid curves are, respec-
process of halo formation occurs rapidly. Furthermore, as thgyely, regular and chaotic trajectories for the same choice of system
density perturbations become larger, the width and size Ofarameters shown in Fig. 6. Also shown as the two solid curves is
the separatrix increase, leading to a more extended halo. Thige periodic boundary of the rms-matched beam. The chaotic tra-
is illustrated in Fig. 6 with the choice of the system param-jectory intersects the beam envelope approximately at the thirteenth
eters corresponding top=0.2, S?k,0=12.0 (0,=88.8°),  period of the focusing channel. Hemijs scaled by the multiplica-
SK/4e=10, and én,/n,=—0.95 (=0.76). The Poincare tion factorS™!, and bothx and = r, are scaled by the multiplica-
surface-of-section plot in Fig. 6 is obtained for beam propadion factor (49eS) Y2
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FIG. 9. Poincare surface-of-section plot in the phase space
(x,x") for a beam propagating through 2000 lattice periods with a
hump density profile. Here, the choice of systems parameters cor-
responds to:=0.2, Sk,,=12.0 (0,=88.8°), SK/4e=10, and
Sny/N,=0.4 (@=1.24).

halo extends to about 1.15 times the beam radius.

Unlike beams with hollow density profiles, the size of the
halo around a beam with a hump density profile does not
change appreciably as the density nonuniformity is in-
creased. This is evident by comparing the case with a hollow
-3 : J ; : ; density profile shown in Fig. 6 with the case with a hump
’ ’ ' density profile beam shown in Fig. 9.

IV. CONCLUSIONS

FIG. 8. Poincare surface-of-section plots in the phase space The d . f fi h dominated
(x,x") for a beam propagating through 2000 lattice periods with a € dynhamics of continuous space-charge-dominate

hump density profile. Here, the choice of systems parameters coP€ams propagating thr(_)ugh a periodic solehoidal focusing
responds t0:7=0.2, S*k,,=7.46 (0,=70°), SKi4e=14, and channel has been studied using a test-particle model. The

sh, /N, =0.1 (g=1.03) for casda) andsh, /n,=0.2 (g=1.07) for ~ Studies were carried out in the regime where the beam is
case(b). assumed to be rms matched into the focusing channel but

have a nonuniform density profile transverse to the direction
jectory intersects the beam envelope approximately at thef beam propagation. It was shown that nonlinearities in the

thirteenth period of the focusing channel. self-fields induce chaotic particle motion and beam halo for-
mation.
C. Hump density profile For beams with hollow density profile@.e., with low

éjensities on the beam axis and high densities at the beam
phase spacex(x’) for a beam with a hump-density profile. edge, it was found that ex_cessive space charge at the (_adge of
The system parameters in Fig. 8 ang=0.2, S2k,0=7.46 the.beellm induces _two pairs of stable and unstgble pepod-one
(5o=70°), SKl4e=14, and on,/f,=0.1 (g=1.03) for orbits (i.e., two pairs of stable and unstable fixed points of
case(a) and 8y, /A, =0.2 (g=1.07) for casdb). As in Figs. the Poincare mggn the vicinity of thg beam core envelope,
5 and 6, 41 particles are loaded initially on a circle defined@nd that the chaotic layer associated with the unstable
by W(x,x’,0,0,0)=1 in the phase space, and the initial con- period-one orbits allows particles to escape from the core to
ditions are indicated by the crosses in Fig. 8. form a halo. The halo was found to be bounded by a KAM
Figures &a) and 8b) exhibit qualitatively the same phase- surface. The ratio of halo to beam core envelope, which,
space structure; that is, both show two stable fixed points atepending on system parameters, can be up to a value of 1.8,
(x,x")=(%0.85,0) and an unstable fixed point at the originwas determined numerically.
(x,x")=(0,0). Particles initialized near the unstable fixed On the other hand, for beams with hump density profiles
point assume chaotic motion that result in the formation of &i.e., with high densities on the beam axis and low densities
halo. By comparing the two cases shown in Fig. 8, it isat the beam edgeit was found that excessive space charge
evident that an increase in density nonuniformity leads to ammn the beam axis induces an unstable fixed point on the axis
increase in the totadedge beam emittance, but does not lead and two stable period-one orbitse., two stable fixed points
to appreciable increase in the halo size. In both cases, thef the Poincare mapoff the axis inside the beam. In this

Figure 8 shows Poincare surface-of-section plots in th
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case, the mechanism of beam halo formation was identifietalo formation, because the equations of motion are inte-
with the chaotic layer associated with the unstable fixedgrable for an arbitrary density profile with axisymmetry.
point on the beam axis. The ratio of halo to beam core en-
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