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Halo formation and chaos in root-mean-square matched beams propagating
through a periodic solenoidal focusing channel

Y. Fink and C. Chen
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The dynamics of continuous space-charge-dominated beams propagating through a periodic solenoidal fo-
cusing channel is studied using a test-particle model. It is shown that nonlinearities in the self-fields induce
chaotic particle motion and beam halo formation for beams that are root-mean-square matched into the focus-
ing channel but have nonuniform density profiles transverse to the direction of beam propagation. In particular,
two parabolic density profiles are considered. For beams with hollow density profiles, it is found that excessive
space charge at the edge of the beam induces two pairs of stable and unstable period-one orbits in the vicinity
of the beam core envelope, and that the chaotic layer associated with the unstable period-one orbits allows
particles to escape from the core to form a halo. On the other hand, for beams with hump density profiles~i.e.,
with high densities on the beam axis and low densities at the beam edge!, it is found that excessive space
charge on the beam axis induces an unstable fixed point on the axis and two stable period-one orbits off the
axis inside the beam, and that the chaotic layer associated with the unstable fixed point is responsible for halo
formation. In both cases, the halo is found to be bounded by a Kolmogorov-Arnold-Moser surface. The ratio
of halo to beam core envelope is determined numerically.@S1063-651X~97!07106-7#

PACS number~s!: 29.27.2a, 41.75.2i, 41.85.2p
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I. INTRODUCTION

Beam halo formation is an important issue in the des
and development of next generation high-power particle
celerators and high-power microwave and millimeter wa
tubes for a wide range of applications such as high-ene
and nuclear physics research, accelerator production of
tium, heavy ion fusion, and high-power, high-resolution
dar @1#. Depending upon the application, beam halos, if n
controlled, can lead to intolerable beam losses, rad
frequency~rf! breakdown, radioactivity buildup in the acce
erator, and emittance growth, to mention a few examples
has been recognized recently@2–9# that for space-charge
dominated beams, halo formation is due to chaotic be
dynamics induced by nonlinear space-charge effects. Cha
particle orbits not only aresensitive to initial conditions, but
also occupy a larger region in phase space than regular
ticle orbits, resulting in beam halo formation and growth
the total~edge! emittance.

In this paper, we explore the mechanisms of chaotic
havior and halo formation in continuous, space-char
dominated beams propagating through a periodic soleno
focusing channel with well matched root-mean-square~rms!
beam envelopes. For a periodic solenoidal focusing cha
with the periodicity lengthS and the vacuum phase advan
s0 , a space-charge-dominated beamsatisfies the condition
@9#

SK

4s0e
.1,

whereas anemittance-dominated beamsatisfies the condition
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Here,K52n/gb
3bb

2 is the normalized beam perveance,e is
the unnormalized rms emittance of the beam@10#, n is the
Budker parameter, andbbc andgb are the~average! velocity
and relativistic mass factor of the particles, respectively.
an electron beam,

SK

4s0e
52.931025

1

s0
S SenD I b

gb
2bb

2 ,

where I b is the electron beam current in amperes,en
5gbbbe is the normalized rms emittance in meter-rad, a
S is in meters. For an ion beam,

SK

4s0e
51.631028

1

s0A
S qeD S SenD I b

gb
2bb

2 ,

whereA andq/e are the atomic mass and magnitude of t
charge state of the ion, respectively,I b is the ion beam cur-
rent in amperes,en5gbbbe is the normalized rms emittanc
in meter-rad, andS is in meters.

In particular, use is made of a test-particle model to sh
that nonlinearities in the self-fields induce chaotic parti
motion and beam halo formation. This analysis pertains
beams that are rms matched into the focusing channel
have nonuniform density profiles transverse to the direct
of beam propagation. Two parabolic density profiles are c
sidered. For beams with hollow density profiles~i.e., with
low densities on the beam axis and high densities at the b
edge!, it is found that excessive space charge at the edg
7557 © 1997 The American Physical Society
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7558 55Y. FINK, C. CHEN, AND W. P. MARABLE
the beam induces two pairs stable and unstable period
orbits in the vicinity of the beam core, and that the chao
layer associated with the unstable period-one orbits allo
particles to escape from the core to form a halo. These res
agree qualitatively with recent experimental observations
halo formation in a potassium (K1) ion beam in the 2-MV
Heavy Ion Injector Experiment at Lawrence Berkeley N
tional Laboratory~LBNL !, where the core of the beam has
sharp-edged hollow density profile@11#. On the other hand
for beams with hump density profiles~i.e., with high densi-
ties on the beam axis and low densities at the beam edg!, it
is found that excessive space charge at the beam axis ind
an unstable fixed point on the axis and two stable period-
orbits off the axis inside the beam, and that the chaotic la
associated with the unstable fixed point is responsible
halo formation. In both cases, the halo is found to
bounded by a Kolmogorov-Arnold-Moser~KAM ! surface
@12#. The ratio of halo to beam core envelope is determin
numerically.

Results presented in this paper are qualitatively the s
as those obtained previously for rms-matched beam prop
tion through an alternating-gradient quadrupole magnetic
cusing channel@4#. An important conclusion from the
present analysis is that the reported chaotic behavior
beam halo formation occur, regardless of whether the be
has an elliptical or circular cross section.

The organization of this paper is as follows. In Sec. II, w
present a test-particle model for studies of the dynamics
rms-matched beams with a parabolic density profile. T
beam envelope equation is derived following the work
Sacherer@10#, and is used to determine the core radius of
rms-matched beam. The equations of motion are derived
test particles. A distribution function, which is consiste
with the assumed parabolic density profile and that also
proaches the Kapchinskij-Vladimirskij~KV ! distribution
@13# continuously as the density becomes uniform, is e
ployed in order to specify the initial conditions of the te
particles. In Sec. III, the effects of space charge on the
namics of a KV beam are illustrated in the context of t
present test-particle analysis. The Poincare surface-of-se
technique@12# is used to study the test-particle motion und
the influence of the nonlinear self-fields associated with
charge density nonuniformity, including chaotic particle m
tion and associated processes of halo formation. Finally, c
clusions are drawn in Sec. IV.

II. MODEL AND ASSUMPTIONS

We consider an intense, continuous charged-particle b
propagating at axial velocitybbcêz through a periodic sole
noidal focusing channel, as shown schematically in Fig. 1
the thin-beam approximation, the applied magnetic field
the focusing channel is given by

BW ext~x,y,s!5Bz~s!êz2
1
2Bz8~s!~xêx1yêy! ~1!

and

BW ext~x,y,s!5BW ext~x,y,s1S!, ~2!
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wheres5z is the axial coordinate,S is the fundamental pe
riodicity length of the focusing field, and the prime denot
derivative with respect tos.

A. Beam self fields

To derive the transverse equations of motion for in
vidual test particles, we make the paraxial approximat
which implies ~a! the Budker parameter is small compar
with unity, i.e.,q2N/mc2!1, ~b! the beam is thin compare
with the lattice periodS, and ~c! the transverse kinetic en
ergy is small compared with the axial kinetic energy, i.
nx
21ny

2!nz
2>bb

2c2. Here,N is the number of particles pe
unit axial length,m and q are the particle rest mass an
charge, respectively,c is the speed of light invacuo, andnW is
the particle velocity. Furthermore, we assume that the be
is rms matched into the focusing channel and has the foll
ing density profile:

nb~r ,s!5H n̂b~s!1dn̂b~s!F12
2r 2

r b
2~s!G ,

0,

for r,r b~s!,

for r.r b~s!,
~3!

where r5(x21y2)1/2 is the radial coordinate,r b(s)5r b(s
1S) is the radius~core envelope! for the rms-matched beam
n̂b(s)5N/pr b

2(s), anddn̂b(s)5dN/pr b
2(s) is a measure of

nonuniformity in the beam density profile. The beam dens
profile is shown in Fig. 2. It is readily shown that the bea
radiusr b(s) is related to the rms beam radius^r 2(s)&1/2 by

FIG. 1. Schematic of charged-particle beam propagat
through a periodic solenoidal focusing channel, where the osc
tory curves illustrate the envelope for the rms-matched beam in
focusing channel.

FIG. 2. Transverse density profiles described by Eq.~3!.
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55 7559HALO FORMATION AND CHAOS IN ROOT-MEAN- . . .
^r 2~s!&5N21E dx dy nb~r ,s!r 2~s!5
r b
2~s!

2g
, ~4!

where the geometric factorg is defined by

g5~12dn̂b/3n̂b!
21. ~5!

For a beam with a uniform density profile,dn̂b(s)50, which
corresponds to the KV equilibrium@13#.

The self-electric and self-magnetic fields associated w
the beam space charge and current are expressed as

EW ~s!~x,y,s!52S êx ]

]x
1êy

]

]yDF~s!~x,y,s!, ~6!

BW ~s!~x,y,s!5S êx ]

]y
2êy

]

]xDAz
~s!~x,y,s!, ~7!
o

is

is

ea
e

h

where]/]s>0 in the paraxial approximation, the scalar p
tential for the self-electric field is obtained by integratin
Poisson’s equation

S ]2

]x2
1

]2

]y2DF~s!524pqnb~r ,s!, ~8!

and the vector potential for the self-magnetic field is defin
by

AW ~s!~x,y,s!5bbF
~s!~x,y,s!êz . ~9!

The solution to Poisson’s equation~8! is
F~s!~r ,s!5 H 2q~N1dN!r 2/r b
2~s!1qdNr4/2r b

4~s!, for r<r b~s!

2q~N1dN/2!22qNln@r /r b~s!#, for r.r b~s!.
~10!
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B. Determination of the rms-matched envelope

The radius for the rms-matched beam is determined fr
the envelope equation

d2r b
ds2

1kz~s!r b2
gK

r b
2

~4ge!2

r b
3 50, ~11!

which is derived following the analysis by Sacherer@10#. In
Eq. ~11!, the geometric factorg is defined in Eq.~5!; the
focusing parameter is defined by

kz~s!5F qBz~s!

2gbbbmc2G
2

5kz~s1S!, ~12!

wheregb5(12bb
2)21/2; the normalized beam perveance

defined by

K5
2q2N

gb
3bb

2mc2
; ~13!

and the rms emittancee is assumed to be constant and
defined bye5e x̃5e ỹ and @10#

e x̃5~^x̃ 2&^x̃ 82&2^ x̃x̃ 8&2!1/2, ~14a!

e ỹ5~^ ỹ 2&^ ỹ 82&2^ ỹỹ 8&2!1/2. ~14b!

Here, ^ & represents the ensemble average over the b
particle distribution, and the particle transverse displacem
in the Larmor frame of reference, (x̃,ỹ), is related to that in
the laboratory frame of reference, (x,y), by

x̃~s!5x~s!cos@f~s!#2y~s!sin@f~s!#, ~15a!

ỹ~s!5x~s!sin@f~s!#1y~s!cos@f~s!#, ~15b!
m

m
nt

with f(s)5*s0
s Akz(s)ds.

In general, the solutions to the envelope equation~11! can
exhibit both regular and chaotic behavior@3,8#. The present
model describes the dynamics of an rms-matched be
whose radius corresponds to a periodic solution to the en
lope equation~11!. When the strength of the focusing field
moderate, Eq.~11! has a unique periodic solution wit
r b(s)5r b(s1S) @3#.

For the case of an even focusing lattice withkz(s)5kz
(2s), it can be shown@3# that Eq.~11! is invariant under the
time-reversal transformation (s,r b)→(2s,r b), and that the
periodic solutionr b(s)5r b(s1S) has the propertyr b8(0)
50. In this case, the rms-matched beam envelope can
determined numerically using a shooting method.

Figure 3 shows the periodic envelope for an rms-matc
beam propagating through a periodically interrupted solen
dal focusing channel with the focusing parameter defined
the following periodic step function:

kz~s!5 Hkz0 , for 2h/2<s/S,h/2,
0, for h/2<s/S,12h/2, ~16!

whereh is the filling factor. The vacuum phase advance
the particle motion in this lattice is given approximately b

s05FSE
0

s

kz~s!dsG1/25~hS2kz0!
1/2, ~17!

which is a measure of the strength of the average focus
field. The choice of system parameters in Fig. 3 correspo
to: h50.2, S2kz0512.0 (s0588.8°), andSK/4e510. It
is evident in Fig. 3 thatr b8(0)50, as expected forkz(s)
5kz(2s). Note also that the results shown in Fig. 3 a
independent ofg in terms of the scaled variables defined
s/S, S2kz , and (4geS)21/2r b .
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C. Transverse equations of motion

It can be shown that in the Larmor frame of reference,
transverse equations of motion for a test particle in the co
bined periodic solenoidal, and self-fields are expressed a

d2x

ds2
1kz~s!x1

q

gb
3bb

2mc2
]

]x
F~s!~x,y,s!50, ~18!

FIG. 3. Beam radius as a function of propagation distances for
an rms-matched beam propagating through a step-function la
defined by Eq.~16!. Here, the choice of system parameters cor
sponds to:h50.2, S2kz0512.0 (s0588.8°), andSK/4e510. The
horizontal and vertical axess, r b , andkz are scaled by the multi-
plication factorsS21, (4geS)21/2, andS2, respectively.
e
-

d2y

ds2
1kz~s!y1

q

gb
3bb

2mc2
]

]y
F~s!~x,y,s!50, ~19!

whereF (s)(x,y,s) is defined in Eq.~10!, and the tilde over
the variablesx andy has been omitted. Heretofore, the va
ablesx and y should be understood as the variablesx̃ and
ỹ, respectively.
For a uniform-density beam withdN50, the equations of

motion ~18! and ~19! are linear for the test particle in th
beam interior withr<r b(s), but become nonlinear for the
test particle outside the beam withr.r b(s). It is important
to point out that for nonuniform-density beams, however,
equations of motion are always nonlinear, regardless
whether the test particle is inside or outside the beam. It w
be shown in Sec. III that for beam propagation through
periodic solenoidal focusing channel, Eqs.~18! and ~19! are
generally nonintegrable and support chaotic solutions.

In the limit of a uniform solenoidal focusing channel wit
kz(s)5const, the rms-matched beam radius is constant. A
result, the equations of motion~18! and ~19! are integrable.
In this case, test particles have regular orbits and are alw
confined inside the beam envelope.

D. The initial distribution

In the present test-particle model, an initial distributio
function corresponding to the parabolic density profile d
fined in Eq.~3! has been derived and is expressed as

ce
-

f b~x,y,x8,y8,s5s0!5H N2dN

16p2em
2 d~W21!1

dN

8p2em
H~W!, 0<dn̂b<n̂b ,

N2dN

16p2em
2 d~W21!1

2dN

pr b
2~s!

R2H~R2!d~x8!d~y8!, 2n̂b,dn̂b<0,
~20!
n
e
V
r

a-
n
ating

of
tice
e

whereR25(x21y2)/r b
2,

W~x,y,x8,y8,s5s0!5
r 2

r b
2 1

1

16em
2

3@~r bx82xrb8!21~r by82yrb8!2#,

~21!

H~x!5 H1, 0<x<1,
0, otherwise, ~22!

and the maximum emittanceem is defined by

e

em
5H 12

dn̂b
3n̂b

, for 0<dn̂b<n̂b ,

S 11
2dn̂b
3n̂b

2
dn̂b

2

3n̂b
2D , for 2n̂b,dn̂b,0.

~23!
It is readily verified thatnb(x,y,s5s0)5* f b(x,y,x8,y8,s
5s0)dx8 dy8. Moreover, the distribution functionf b has the
property that it approaches the KV equilibrium distributio
@13# continuously asdn̂b→0. Therefore, the beams under th
present investigation are perturbed directly from the K
equilibrium, which is the only known Vlasov equilibrium fo
periodically focused intense charged-particle beams.

To summarize, equations~18! and~19! together with Eqs.
~10!, ~11!, and~20! form the basis for subsequent investig
tions of chaotic particle motion and halo formation in a
rms-matched, space-charge-dominated beam propag
through a periodic solenoidal focusing channel.

III. NUMERICAL RESULTS

In this section, we discuss results of a numerical study
the beam dynamics for the case of the step-function lat
described by Eq.~16!. In the numerical study, the envelop
equation~11! and the particle equations~18! and ~19! are
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55 7561HALO FORMATION AND CHAOS IN ROOT-MEAN- . . .
solved simultaneously using a fourth-order Runga Kutta
tegrator. The initial conditions for the envelope equation~11!
are chosen such that they yield the periodic beam enve
as described in Sec. II. Becausey505y8 is invariant, we
choose the initial conditionsy(0)505y8(0) in all of the
analyses discussed in this section. Moreover, for all of
results presented in Figs. 4–6, 8, and 9, the phase s
variables are scaled according to:

s→
s

S
, x→

x

r b~0!
, y→

y

r b~0!
,

x8→
r b~0!x8

4em
, and y8→

r b~0!y8

4em
, ~24!

whereem is the maximum emittance defined in Eq.~23!.

A. Uniform-density profile

Although the equations of motion~18! and ~19! have a
simple form, the transverse beam dynamics exhibits rich
havior whenever space-charge effects become signific
This is illustrated in Fig. 4, where Poincare surface-
section plots@11# are shown in the phase space (x,x8) for
both emittance- and space-charge-dominated unifo
density beams. The choice of the system parameters in F
corresponds to:h50.2, S2kz0510.0 (s0581.0°), g51.0
(dn̂b50), andSK/4e50.5 for the case of an emittance
dominated beam in~a! and SK/4e56.0 for the case of a
space-charge-dominated beam in~b!. For each case shown i
Fig. 4, 41 particles are loaded initially ats50 uniformly
along thex axis fromx522.0 to 2.0, and the initial condi
tions are indicated by the crosses. The Poincare map@12# is
generated here by plotting the positions and momenta of
test particles as they pass through the lattice points
51,2,. . .,2000.

Figure 4~a! shows a simple and regular phase-space st
ture for the case of an emittance-dominated beam. By c
trast, Fig. 4~b! shows a rather complicated phase-space st
ture for the case of a space-charge-dominated be
containing a mixture of regular orbits, nonlinear resonanc
and chaotic layers. In Fig. 4~b!, all of the test particles loade
initially inside the beam envelope have regular orbits, a
these particles correspond to those in the KV distributi
However, because Eqs.~18! and ~19! are nonlinear for r
.r b(s) and because the strength of the nonlinearity is p
portional toSK/4e, the orbits of some of the test particle
that cross the beam envelope become chaotic, i.e.,sensitive
to initial conditions. The chaotic particle orbits lie in the
chaotic layers are bounded by the invariant tori known
KAM surfaces@12#.

It should be emphasized that all of the test particles in
KV distribution will remain inside the beam envelope, d
spite the fact that the underlying equations of motion~18!
and ~19! are nonintegrable and support chaotic solutions
r.r b(s). As far as beam halo formation is concerned, it
important to identify the mechanisms by which the test p
ticles initially in the perturbed KV distributionf b defined in
Eq. ~20! enter the chaotic layer. This is the subject mat
discussed in the remainder of this section.
-
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B. Hollow density profile

Figure 5 shows Poincare surface-of-section plots in
phase space (x,x8) for a beam with a hollow density profile
The system parameters in Fig. 5 are:h50.2, S2kz057.46
(s0570°), SK/4e514, anddn̂b /n̂b520.1 (g50.96) for
case~a! anddn̂b /n̂b520.2 (g50.93) for case~b!. For ev-
ery case shown in Fig. 5, 41 test particles are loaded initi
on a circle defined byW(x,x8,0,0,0)51 in the phase space
and the initial conditions are indicated by the crosses. N
thatW51 is the maximum value achieved by any particle
the perturbed KV distributionf b . The Poincare surface-of
section plots are generated here in the same way as in Fi

In Fig. 5, there is a pair of stable and unstable fixed poi
at the edge of the beam, i.e., at (x,x8)'(1,0) in the phase
space. The unstable fixed point is located inside the be
whereas the stable fixed point and associated island are
cated outside of the beam. Because of the symmetry in
underlying equations of motion~18! and ~19!, there is an-
other pair of stable and unstable fixed points at (x,x8)
'(21,0). These fixed points, which correspond to perio
solutions of the equations of motion~18! and ~19!, are in-
duced by excessive space charge at the edge of the ho

FIG. 4. Poincare surface-of-section plots in the phase sp
(x,x8) for emittance- and space-charge-dominated beams propa
ing through 2000 lattice periods with uniform density profiles. T
choice of the system parameters corresponds to:h50.2, S2kz0

510.0 (s0581.0°), g51.0 (dn̂b50), and SK/4e50.5 for the
case of an emittance-dominated beam in~a! andSK/4e56.0 for the
case of a space-charge-dominated beam in~b!.
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7562 55Y. FINK, C. CHEN, AND W. P. MARABLE
beam. Associated with the two unstable fixed points is a t
chaotic layer~separatrix!, which occupies both the regio
with W,1 and the region withW.1 in the phase space
Particles in this thin chaotic layer can cross the beam en
lope, forming a halo around a dense core of beam determ
by W<1 in the phase space. Although the chaotic la
has a sizable excursion along thex8 axis, it extends to
x'61.1 along thex axis. Therefore, the halo size in bo
examples shown in Fig. 5 is about 10% larger than the be
core radius. Moreover, because the chaotic layer is thin,
particle density in the halo region is expected to be v
tenuous compared with that in the core region.

Although the Poincare surface-of-section plots in Fig
are obtained for beam propagation through a long focus
channel with 2000 lattice periods in order to show fine str
tures in the phase space, it should be emphasized tha
process of halo formation occurs rapidly. Furthermore, as
density perturbations become larger, the width and size
the separatrix increase, leading to a more extended halo.
is illustrated in Fig. 6 with the choice of the system para
eters corresponding to:h50.2, S2kz0512.0 (s0588.8°),
SK/4e510, anddn̂b /n̂b520.95 (g50.76). The Poincare
surface-of-section plot in Fig. 6 is obtained for beam pro

FIG. 5. Poincare surface-of-section plots in the phase sp
(x,x8) for a beam propagating through 2000 lattice periods wit
hollow density profile. Here, the choice of system parameters
responds to:h50.2, S2kz057.46 (s0570°), SK/4e514, and
dn̂b /n̂b520.1 (g50.96) for case~a! and dn̂b /n̂b520.2 (g
50.93) for case~b!.
in
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gation through 20 lattice periods of the focusing field w
2000 test particles loaded initially on the circ
W(x,x8,0,0,0)51. The halo size in Fig. 6 isxhalo51.8, i.e.,
1.8 times the beam core radius.

Shown in Fig. 7 as the dashed and bold solid curves
respectively, examples of regular and chaotic trajectories
the same choice of system parameters shown in Fig. 6
Fig. 7,s is scaled by the multiplication factorS21, and both
x and 6r b are scaled by the multiplication facto
(4geS)21/2. The regular trajectory is initialized well insid
the beam envelope withx850, whereas the chaotic trajec
tory is initialized near the unstable fixed point withx850.
Also shown in Fig. 7 as the two solid curves is the period
boundary (6r b) of the rms-matched beam. The chaotic tr

ce
a
r-

FIG. 6. Poincare surface-of-section plots in the phase sp
(x,x8) for a beam propagating through 20 lattice periods with
hollow density profile and 2000 test particles. Here, the choice
system parameters corresponds to:h50.2, S2kz0512.0 (s0

588.8°), SK/4e510, anddn̂b /n̂b520.95 (g50.76).

FIG. 7. Shown as the dashed and bold solid curves are, res
tively, regular and chaotic trajectories for the same choice of sys
parameters shown in Fig. 6. Also shown as the two solid curve
the periodic boundary of the rms-matched beam. The chaotic
jectory intersects the beam envelope approximately at the thirte
period of the focusing channel. Here,s is scaled by the multiplica-
tion factorS21, and bothx and6r b are scaled by the multiplica
tion factor (4geS)21/2.
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jectory intersects the beam envelope approximately at
thirteenth period of the focusing channel.

C. Hump density profile

Figure 8 shows Poincare surface-of-section plots in
phase space (x,x8) for a beam with a hump-density profile
The system parameters in Fig. 8 are:h50.2, S2kz057.46
(s0570°), SK/4e514, and dn̂b /n̂b50.1 (g51.03) for
case~a! anddn̂b /n̂b50.2 (g51.07) for case~b!. As in Figs.
5 and 6, 41 particles are loaded initially on a circle defin
byW(x,x8,0,0,0)51 in the phase space, and the initial co
ditions are indicated by the crosses in Fig. 8.

Figures 8~a! and 8~b! exhibit qualitatively the same phase
space structure; that is, both show two stable fixed point
(x,x8)5(60.85,0) and an unstable fixed point at the orig
(x,x8)5(0,0). Particles initialized near the unstable fix
point assume chaotic motion that result in the formation o
halo. By comparing the two cases shown in Fig. 8, it
evident that an increase in density nonuniformity leads to
increase in the total~edge! beam emittance, but does not lea
to appreciable increase in the halo size. In both cases,

FIG. 8. Poincare surface-of-section plots in the phase sp
(x,x8) for a beam propagating through 2000 lattice periods wit
hump density profile. Here, the choice of systems parameters
responds to:h50.2, S2kz057.46 (s0570°), SK/4e514, and
dn̂b /n̂b50.1 (g51.03) for case~a! anddn̂b /n̂b50.2 (g51.07) for
case~b!.
e

e

d
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at
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he

halo extends to about 1.15 times the beam radius.
Unlike beams with hollow density profiles, the size of th

halo around a beam with a hump density profile does
change appreciably as the density nonuniformity is
creased. This is evident by comparing the case with a hol
density profile shown in Fig. 6 with the case with a hum
density profile beam shown in Fig. 9.

IV. CONCLUSIONS

The dynamics of continuous space-charge-domina
beams propagating through a periodic solenoidal focus
channel has been studied using a test-particle model.
studies were carried out in the regime where the beam
assumed to be rms matched into the focusing channel
have a nonuniform density profile transverse to the direct
of beam propagation. It was shown that nonlinearities in
self-fields induce chaotic particle motion and beam halo f
mation.

For beams with hollow density profiles~i.e., with low
densities on the beam axis and high densities at the b
edge!, it was found that excessive space charge at the edg
the beam induces two pairs of stable and unstable period
orbits ~i.e., two pairs of stable and unstable fixed points
the Poincare map! in the vicinity of the beam core envelope
and that the chaotic layer associated with the unsta
period-one orbits allows particles to escape from the core
form a halo. The halo was found to be bounded by a KA
surface. The ratio of halo to beam core envelope, whi
depending on system parameters, can be up to a value o
was determined numerically.

On the other hand, for beams with hump density profi
~i.e., with high densities on the beam axis and low densi
at the beam edge!, it was found that excessive space char
on the beam axis induces an unstable fixed point on the
and two stable period-one orbits~i.e., two stable fixed points
of the Poincare map! off the axis inside the beam. In thi
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FIG. 9. Poincare surface-of-section plot in the phase sp
(x,x8) for a beam propagating through 2000 lattice periods wit
hump density profile. Here, the choice of systems parameters
responds to:h50.2, S2kz0512.0 (s0588.8°), SK/4e510, and
dn̂b /n̂b50.4 (g51.24).
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case, the mechanism of beam halo formation was identi
with the chaotic layer associated with the unstable fix
point on the beam axis. The ratio of halo to beam core
velope for a beam with a hump density profile was found
be less than that for a beam with a hollow density profi
for, otherwise, the same choice of system parameters.

It should be emphasized that for rms-matched bea
propagating through a uniform solenoidal focusing chann
test particles donot exhibit either chaotic behavior or bea
ig
.

n-
r-
ey
d
d
-
o
,

s
l,

halo formation, because the equations of motion are in
grable for an arbitrary density profile with axisymmetry.
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