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Microcavity confinement based on an anomalous zero
group-velocity waveguide mode
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We propose and demonstrate a mechanism for small-modal-volume high-Q cavities based on an anomalous
uniform waveguide mode that has zero group velocity at a nonzero wave vector. In a short piece of a uniform
waveguide with a specially designed cross section, light is confined longitudinally by small group-velocity
propagation and transversely by a ref lective cladding. The quality factor Q is greatly enhanced by the small
group velocity for a set of cavity lengths that are separated by approximately p�k0, where k0 is the longitudinal
wave vector for which the group velocity is zero. © 2005 Optical Society of America

OCIS codes: 230.5750, 230.7370.
Optical microcavities with small modal volumes and
large quality factors are required in a wide range of
applications and studies, such as low-threshold lasers,
small optical f ilters, nonlinear optics, and strong-
coupling cavity quantum electrodynamics.1 – 6

Cavities with a modal volume V of the order of
l3 tend to have quality factors Q that are limited by
radiation loss. Several mechanisms have been used
to improve Q without sacrif icing the small modal
volume: the use of a complete photonic bandgap
in a three-dimensional photonic crystal,7 perfect
mode matching in a cylindrical Bragg resonator,8

Fourier-space analysis of the field distribution in a
photonic crystal slab cavity,9,10 and multipole can-
cellation in a photonic crystal slab cavity.11 Here
we introduce a fundamentally different mechanism
based on small group-velocity propagation of light
in a short piece of a uniform waveguide. The small
group velocity results in a large Q in two ways: (i) it
increases the round-trip travel time inside the cavity,
and (ii) it decreases the fraction of power lost at each
ref lection from the boundaries (even though the struc-
ture includes no conventional high-quality mirrors in
the axial direction). A critical requirement is that the
zero group velocity be associated with a nonzero wave
vector so that the Fabry–Perot resonance condition
can be met.

The design of the cavity is based on the possibility of
uniform waveguides to support modes with zero group
velocity at a nonzero longitudinal wave vector. It
was shown recently12 that such modes can be created
in waveguides with an arbitrary cross section, pro-
vided that the waveguides have a ref lective cladding,
such as a metal layer, a dielectric mirror, or a two-
dimensional photonic crystal cladding. To demon-
strate the novel high-Q mechanism we first consider
a simple cavity based on an idealized dielectric-loaded
metal waveguide. Then we show how the same
mechanism can be exploited in a realistic structure by
designing an all-dielectric high-Q cavity.

Let us first consider the dielectric-loaded metal
waveguide whose cross section is shown as an inset in
Fig. 1. Inside a metal cylinder of inner radius a, we
have a dielectric rod of radius 0.65a and a refractive
0146-9592/05/050552-03$15.00/0
index n1 � 3.50 surrounded by a region with a low
refractive index n0 � 1. Dispersion relations v�k� are
shown for the lowest two guided modes with angular
momentum unity: HE11 and EH11. Strong repulsion
between the two modes is visible for wave vectors
k . 0, because of the removal of a TE�TM symmetry
that exists only at k � 0.12 As a result, the lower
mode acquires an anomalous dispersion relation that
includes a region of backward-wave propagation13 for
k less than k0 � 0.146 �2p�a�, as well as a point of
zero group velocity at wave vector k0 and angular
frequency v0 � 0.1656 �2pc�a�. This special point
of the dispersion relation introduces a longitudinal
length scale L � 2p�k0 � 6.85a in a waveguide that
is otherwise uniform. Now, imagine an optical cavity
that is simply a piece of length L of the waveguide
described above, surrounded by vacuum, as shown
in Fig. 2(a). The resonant modes of the cavity obey
the condition that the round-trip accumulated phase

Fig. 1. Band structure of the axially uniform dielectric-
loaded metal waveguide (inset) showing the lowest two
modes. The lower mode is anomalous with a nontrivial
point of zero group velocity at k0 � 0.146 �2p�a�, v0 �
0.1656 �2pc�a�.
© 2005 Optical Society of America
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Fig. 2. (a) A piece of the waveguide of length L in Fig. 1
can form a high-Q cavity. (b) Resonant mode in a cavity
of length L � 3.9a. In an axial cross section we show
the electric f ield component perpendicular to the plane,
with the red and blue regions corresponding to positive
and negative values, respectively. The metal cladding
is shown in black. Note that the f inite-difference time-
domain computational cell is actually larger than the
rectangular box shown here. (c) Resonant mode for
L � 13.9a. (d) Q is plotted as a function of cavity length
L. The red circles are the results of finite-difference
time-domain simulations, and the dashed vertical lines
correspond to multiples of L�2. Also shown as a blue
dashed line is the Q�L� curve for a cavity based on a
modif ied waveguide that does not have vg � 0 at k fi 0.

2kL 1 2Df is a multiple of 2p, where Df is the phase
shift associated with ref lection from the boundary
and is roughly independent of L. For lengths L
separated by L�2 � p�k0, the resonance condition is
met for wave vectors close to k0, and therefore Q of the
resonant mode should be enhanced by the low group
velocity. Thus we expect Q�L� to have a periodic
enhancement, with periodicity L�2.

We analyze the resonant modes of the cavity with
finite-difference time-domain simulations, using a
resolution of 20 grid points per a and perfectly
matched absorbing boundary layers.14 To speed up
the calculations we discretize the structure over a
cylindrical grid and impose an angular f ield de-
pendence of the form exp�iw�, thus selecting only
modes with angular momentum unity and reduc-
ing a full three-dimensional problem to a two-
dimensional simulation. We excite the resonant mode
of interest with a Gaussian pulse and then monitor
the radiative decay of the f ield. The frequencies and
quality factors of resonant modes are extracted with a
filter-diagonalization method that decomposes a time
series into a sum of decaying sinusoids.15 In Fig. 2(b)
we show the high-Q resonant mode found in a cavity
of length L � 3.9a. The mode has angular frequency
0.1711 �2pc�a�, quality factor Q � 49, 000, and modal
volume 0.6 �l�n1�3. Similarly, for L � 13.9a, Fig. 2(c)
shows a mode with v � 0.1622 �2pc�a�, Q � 1.0 3 106,
and modal volume 1.4 �l�n1�3. From the two field
patterns, we infer that these two resonant modes are
based on the same mode of the uniform waveguide,
the difference being the number of half-wavelengths
that f it inside the cavity: one and four, respectively.
Figure 2(d) shows on a semi-logarithmic scale how Q
varies with the length of cavity L. We plot the Q�L�
curve as four disconnected sections because the mode
with the highest Q value changes from having one
half-wavelength in the cavity to having two, three,
or four half-wavelengths. The immediate qualitative
conclusion from Fig. 2(d) is that there is indeed a lon-
gitudinal length scale associated with the waveguide,
this being ref lected in the periodic behavior of Q�L�.
Moreover, the cavity lengths for which Q�L� peaks
are separated by almost exactly L�2. Actually, the
peak lengths themselves lie very close to the multiples
of L�2 shown as dashed vertical lines in the f igure,
which is consistent with a ref lection phase shift Df

being close to p. As L becomes larger, the frequency
of the resonant mode converges quadratically to v0,
the frequency of zero group velocity in the uniform
waveguide. All the results presented above support
our conclusion that the high-Q resonant mode indeed
has its origin in the zero group-velocity mode of the
waveguide and that the longitudinal length scale L
of the waveguide is critical for determining the cavity
lengths for which Q is maximum. For comparison,
the dashed blue curve in Fig. 2 is the Q�L� curve for
a waveguide in which the radius of the central rod
has been reduced to 0.40a. This waveguide still has
a f lattened dispersion relation for the HE11 mode but
does not have a mode with vg � 0 at k fi 0, and thus
its Q�L� curve does not possess any periodicity.

To verify that the results presented above are gen-
eral and not just a coincidence for a particular wave-
guide structure, we repeat the Q�L� calculations for
other values of refractive index n1 and summarize the
results in Table 1. For each n1 we list the wave vector
k0 at which the waveguide mode has zero group veloc-
ity and cavity length L4 that corresponds to the fourth
peak of curve Q�L�. Our simple model based on the
round-trip phase shift predicts that 2k0L4 should be in
the neighborhood of 8p. Indeed, we find that 2k0L4
is always close to the predicted value. Moreover, a
change in k0 of �10% from n1 � 3.50 to n1 � 3.90 re-
sults in a change of only 1% for phase shift 2k0L4.

Table 1. Conservation of Round-Trip Phase Shift

n1 k0 �2p�a� L4 �a� 2k0L4

3.50 0.146 13.9 8.08p
3.70 0.161 12.4 8.02p
3.90 0.172 11.6 7.98p
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Fig. 3. (a) Cylindrical all-dielectric cavity. (b) Axial
cross section of the cavity structure: on top of a substrate
with refractive index nsub, we have a central rod with index
n1 followed by a region with index n0 and surrounded
by a Bragg mirror that conf ines light to the core region.
The electric f ield component perpendicular to the plane is
shown in a color plot.

Having shown that zero group-velocity modes can
lead to high-Q resonances, we apply this mechanism
to the design of an all-dielectric high-Q cavity. As
shown in Ref. 12, modes with vg � 0 at a nonzero wave
vector can be found in dielectric waveguides such as
cylindrical Bragg fibers and photonic crystal fibers.
Here we choose the former waveguide type as an ex-
ample and design a cavity geometry, shown in Fig. 3,
that should be manufacturable by lithographic meth-
ods. The core part is similar to the cavity presented
before: a central rod with index n1 � 3.50 (e.g., sili-
con) and radius 0.60a, surrounded by a region with
refractive index n0 � 1 up to a radius a. The rest
of the structure is the Bragg mirror that confines
light to the core region. The mirror is made from
alternating layers: high-index layers with index n1
and thickness d1 � 0.40a and low index layers with
n2 � 1.45 (e.g., silica) and d2 � 0.95a. The cavity sits
on a substrate with index nsub. We first calculate
the modes of a waveguide that has these cross-section
parameters and find a bandgap-guided mode with
vg � 0 at k0 � 0.12 �2p�a� and v0 � 0.182 �2pc�a�.
We expect to create a high-Q resonant mode when
the cavity length (or height in this case) is near
L�2 � p�k0. Indeed, for L � 4.8a and a symmetric
structure with nsub � n0 � 1, we f ind a resonant
mode with frequency 0.184 �2pc�a�, Q � 17, 000 and
modal volume 1.1 �l�n1�3. In the core region the
field distribution shown in Fig. 3(b) is very similar to
that obtained for the analogous metallic cavity. Also,
the frequency of the resonant mode is only 1% away
from v0. Thus we conclude that this high-Q mode
is also due to the spatial zero group-velocity point
of the dispersion relation. Taking a higher value
for the substrate refractive index leads to a decrease
in Q because power leaks more easily into a high-
refractive-index region. For nsub � 1.30 and L � 5.00
the quality factor is reduced by �50% to Q � 7500.
Since this reduction factor is approximately the same
for longer cavities, larger Q values can be obtained for
cavities designed to fit higher-order resonant modes
as in Fig. 2(d).

In conclusion, we have described a general mecha-
nism for obtaining high-Q resonant modes starting
from uniform waveguide modes with zero group veloc-
ity at a nonzero wave vector. We demonstrated the
mechanism in a simple metal cavity and showed that
the same mechanism can be applied to all-dielectric
cavities as well. It is our hope that, by itself or in
combination with previously studied mechanisms, this
new high-Q mechanism will allow for the design and
fabrication of improved optical microcavities.

This work was supported by the Materials Research
Science and Engineering Center program of the Na-
tional Science Foundation under grant DMR-9400334.
M. Ibanescu’s e-mail address is michel@mit.edu.

References

1. K. J. Vahala, Nature 424, 839 (2003).
2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D.

O’Brien, P. D. Dapkus, and I. Kim, Science 284, 1819
(1999).

3. M. Soljacic, M. Ibanescu, S. G. Johnson, J. D.
Joannopoulos, and Y. Fink, Opt. Lett. 28, 516 (2003).

4. J. Vuckovic and Y. Yamamoto, Appl. Phys. Lett. 82,
2374 (2003).

5. D. Ochoa, R. Houdre, M. Ilegems, H. Benisty, T. F.
Krauss, and C. J. M. Smith, Phys. Rev. B 61, 4806
(2000).

6. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer,
Phys. Rev. E 65, 016608 (2000).

7. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Na-
ture 386, 143 (1997).

8. M. R. Watts, S. G. Johnson, H. A. Haus, and J. D.
Joannopoulos, Opt. Lett. 27, 1785 (2002).

9. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, Nature
425, 944 (2003).

10. K. Srinivasan and O. Painter, Opt. Express 10, 670
(2002), http://www.opticsexpress.org.

11. S. G. Johnson, S. Fan, A. Mekis, and J. D. Joannopou-
los, Appl. Phys. Lett. 78, 3388 (2001).

12. M. Ibanescu, S. G. Johnson, D. Roundy, C. Luo, Y. Fink,
and J. D. Joannopoulos, Phys. Rev. Lett. 92, 063903
(2004).

13. P. J. B. Clarricoats and R. A. Waldron, J. Electron.
Control 8, 455 (1960).

14. A. Taf love and S. C. Hagness, Computational Elec-
trodynamics: the Finite-Difference Time-Domain
Method, 2nd ed. (Artech, Norwood, Mass., 2000).

15. V. A. Mandelshtam and H. Taylor, J. Chem. Phys. 107,
6756 (1997).


